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Abstract

A piezoelectric material with a Griffith crack perpendicular to the poling axis is analyzed within the framework of the
theory of linear piezoelectricity. Using exact electric boundary conditions at the crack surfaces, the nonlinear behavior
between the electric displacement at the crack faces and applied loading is given, and it can be approximated by a linear
relation on applied electric field. The Fourier transform technique is employed to reduce the mixed boundary value
problem to dual integral equations. Solving resulting equations, expressions for the electroelastic field in the entire plane
are obtained explicitly for a cracked piezoelectric material subjected to uniform combined electromechanical loading.
The distribution of asymptotic field and the intensity factors of electroelastic field as well as the elastic T-stress are
determined. Particularly, the maximum hoop strain sy is suggested as a fracture criterion for piezoelectric materials.
Based on this criterion, relevant experimental results can be explained successfully. As an illustrative example, theo-
retical predictions for PZT-4 ceramic with a crack are in excellent agreement with existing experimental data, not only
in qualitative behavior but also in quantitative results.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric/ferroelectric ceramics have been used widely in techniques such as actuators, sensors,
transducers, etc. due to the intrinsic coupling feature between elastic and electric behaviors (Rao and Sunar,
1994). However, a main disadvantage is that they are very susceptible to fracture because of their brit-
tleness. Owing to various causes, cracks or flaws are inevitably present in these materials, which gives rise to
electroelastic field concentration under applied electromechanical loading, rising high enough to cause the
crack advance, and finally leads to serious degradation of the performance of piezoelectric materials
(Pisarenko et al., 1985; Tobin and Pak, 1993; etc.). To understand the failure mechanism of piezoelectric
materials and maintain the stability of cracked piezoelectric structures operating in an environment of
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combined electromechanical loading, the analysis of elastic and electric behaviors is prerequisite. So far,
great efforts in theory have been made on this field (e.g. Suo et al., 1992; Pak, 1990, 1992; Sosa, 1992; Dunn,
1994; Sosa and Khutoryansky, 1996; Zhang et al., 1998, Ru, 1999; Gao and Fan, 1999; Shindo et al., 2000;
McMeeking, 2001; Xu and Rajapakse, 2001; Liu and Hsia, 2003; etc.) In particular, a significant matter is
to establish fracture criterion applicable to piezoelectric materials.

As we know, within the framework of the theory of linear elastic fracture mechanics there exist many
fracture criteria for a purely elastic medium, and these criteria mainly contain those of stress intensity
factor, energy release rate (or J-integral, crack driving force), energy density factor, etc. However, the
above-mentioned these criteria for a purely elastic medium seem unlikely to generalize directly to piezo-
electric materials due to the introduction of electric field along with the coupling of electric and elastic
fields. For example, the stress intensity factor criterion is clearly unsuitable for a cracked piezoelectric
material, since stress intensity factors near a crack tip are independent of applied electric loading provided
that applied stress is prescribed regardless of an impermeable crack (Pak, 1992; Sosa, 1992) or a permeable
crack (Sosa and Khutoryansky, 1996; Zhang et al., 1998; Gao and Fan, 1999; Shindo et al., 2000). It implies
that crack growth depends only upon applied mechanical stress, not upon electric loading, which is
inconsistency with the experimental observations that a positive electric field promotes crack growth and a
negative one impedes crack growth.

On the other hand, based on the energy release rate criterion, it is readily shown that the total energy
release rate G is composed of two parts, G = G™ + G°, one corresponding to the mechanical part G™ and
the other to the electric part G°. Moreover, G° = 0 for a permeable crack, leading to applied electric fields
have no influence on crack advance, which is clearly unreasonable, while G° < 0 for an impermeable crack
under positive and negative electric fields, indicating that applied electric fields always hinder crack
propagation irrespective of their directions, which is contradictory to the experimental results. To amend
this drawback, some modified models have been proposed. Gao et al. (1997) and Fulton and Gao (2001)
adopted a multiscale viewpoint, assumed electric nonlinearity ahead of the crack tip and proposed a local
energy release rate as a fracture criterion accounting for crack propagation.

Based on the fact that crack growth is a process of mechanical deformation, Park and Sun (1995)
formulated mechanical strain energy release rate as a fracture criterion of piezoelectric materials, and re-
vealed that the theoretical prediction is in accordance with their experimental data. However, since the
released mechanical energy, not the total energy, was only considered during crack growth, the effect of G*
on crack growth is dropped. Similarly, adopting small scale electric saturation in front of the crack tip (Gao
et al., 1997), Fang et al. (1999) evaluated the energy release rate and found that G° = 0 in this case, leading
to that G is identical to G™. Recently, the analysis by Guiu et al. (2003) also indicates that the energy release
rate or crack extension force is, indeed, not suitable parameter for piezoelectric materials, and that the rate
of mechanical work is an acceptable criterion. Now, a clear understanding of the roles of G° in the fracture
of piezoelectric materials is still lacking. In particular, for cracked dielectrics G° is introduced in analogy
with energy release rate in linear elastic fracture mechanics and used to characterize breakdown of electric
behavior in dielectrics (Garboczi, 1988; Ouyang and Lee, 1998). In other words, G¢ affects only electric
breakdown and does not affect crack (mechanical) growth. According to this viewpoint, the role of G° in
piezoelectric materials can account for electric breakdown of piezoelectric materials and only G™ affects
mechanical failure of piezoelectric materials. Further, in theory if imposing all the piezoelectric constants
vanish, meaning that a piezoelectric material reduces to an elastic dielectric without coupling between
mechanical deformation and electric field, the influence of electric field, of course, is independent of crack
growth. Nevertheless, under such circumstances, the total energy release rate G is still composed of G™ and
G°, and the contribution of G° on crack propagation is visible, which is clearly contrary to practical situ-
ation.

Furthermore, crack growth driven by purely electric fields in poled ferroelectrics has been observed in
experiment (Cao and Evans, 1994; Schneider and Heyer, 1999; Shang and Tan, 2001; dos Santos e Lucato
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et al., 2002; etc.). Within the framework of linear piezoelectricity, G™ fails to predict crack advance in the
absence of mechanical loading, since in this case G™ = 0. Hence, Hwang et al. (1995), and Yang and Zhu
(1998) proposed domain switching zone around the crack tip responsible for the anisotropy of fracture
toughness induced by electric fields.

In this paper, fracture analysis of cracked piezoelectric materials is made, and maximum hoop
strain (MHS) is suggested as a fracture criterion of piezoelectric materials. This paper is organized as
follows. In Section 2, basic theory as well as exact natural electric boundary conditions at the crack
surfaces are given. Section 3 is devoted to determining the complete electroelastic field of a piezo-
electric material containing a crack perpendicular to the poling axis, by using the Fourier transform
technique and solving dual integral equations. Meanwhile, the nonlinear behavior of electric dis-
placement at the crack surfaces is determined. In Section 4, the crack tip asymptotic fields are ob-
tained. Further the field intensity factors are determined, and the MHS criterion is presented. As an
example, in Section 5 a PZT-4 ceramic containing a crack is considered. A comparison of theoretical
predictions with existing experimental results is made, inferring the effectiveness of the MHS criterion
for piezoelectric materials.

2. Statement of the problem
2.1. Basic equations
Consider an infinite transversely isotropic piezoelectric body with the poling axis as the z-axis and the

isotropic plane as the xy-plane. With the framework of the theory of linear piezoelectricity, the constitutive
equations restricted to the xoz-plane take the form

Oxx = Cl1Sw + €138 — €31 E, (la)
02 = C13Su + €338z — ek, (1b)
Oy = 24482 — ei5Ex, (Ic)
D, = 2ei55., + enky, (1d)
D, = €318 + €335z + e33Ex, (Le)

where ¢;;, ¢;, and e; are the elastic stiffnesses, the dielectric permittivities, the piezoelectric constants,
respectively. Here the components of strain and electric field can be expressed in terms of elastic dis-
placements, u,(x,z), u.(x,z), and electric potential, ¢(x,z), by the following equations, respectively:

1
Sij =5 (i + uji), Ei=—¢, (2)

in which i, j stand for x and z.
In the absence of body forces and free charges, it follows from the equilibrium equations of stresses and
electric displacements that elastic displacements and potential satisfy the basic governing equations

Clilhy e + Caglhyzz + (€13 + Caa)ttzrz + (€31 +-€15)9 . = 0, (3a)
C4qllz xx + C33Uz 2 + (C13 + c44)”x,xz + elSd),xx + 633(1)"22 = 07 (3b)

€15Uz xx + €33U; ;- + (e3l + e]S)ux,xz — €11 ¢_;og - 833¢,zz = 0 (30)
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2.2. Boundary conditions

In what follows special attention is focused on a through Griffith crack of length 2a perpendicular to the
poling axis, as shown in Fig. 1. In order to obtain a desired electroelastic field of a piezoelectric medium
with a Griffith crack, appropriate boundary conditions must be furnished. First of all, for the elastic
boundary conditions, the crack surfaces are free of stress, which can be written as

0.:(x,0) =0, 0.(x,0)=0, x| < a. (4)

In addition, for electric boundary conditions at the crack surfaces, we adopt exact natural boundary
conditions

Dﬁ,wlr :Dfmn Et<p>|1_ :E§C)|rv (5)

where n and ¢ represent respectively the directions of the outward normal and tangential vectors of I', I
being the boundary of crack posterior to deformation, not prior to deformation, a quantity with the
superscripts (p) or (c) designates the one in the piezoelectric matrix or in the hole inside the opening crack,
respectively, and the superscript (p) is commonly omitted without confusion.

In previous study involving crack problems of piezoelectric materials, electric boundary conditions of
two types at the crack surfaces prevail. One is an impermeable crack, assuming that the electric displace-
ment at the crack surfaces and inside the crack vanishes, and the other is a permeable crack, assuming that
electric displacement and electric potential are continuous across the crack. However, a real crack is a
dielectric with permittivity &© (= &.&), & = 8.85 x 10> F/m), ¢, = 1 corresponding to an ideal vacuum
crack. An impermeable crack simply enforces the requirement of ¢, = 0, while a permeable crack ignores
the contribution of the dielectric interior to crack on electroelastic field, both of which may give rise to an
error. Here it is emphasized that the relations in (5) are assumed to be valid at the boundary of a deformed
crack, which is contrast to the analysis by Shindo et al. (1997) for anti-plane shear crack and Yang (2001)
for an in-plane mode-I crack, who applied (5) at the boundary of an undeformed crack, i.e. I in this case
reduces to a mathematical cut having no thickness, —a < x < a, y = 0. In effect, for the latter case, the
problem can be easily shown to be identical to that under the electrically permeable assumption at the crack
surfaces. According to the finite element analysis of McMeeking (1999), it is more reasonable and suitable
to take I' as the boundary of the opening crack in treating crack problems of piezoelectric materials.
Moreover, recent experimental evidence (Schneider et al., 2003) revealed a distinct drop of electric potential
between two surfaces of an opening crack, which implies the existence of electric field in the opening crack
interior. Accordingly, the electric displacement vector D' inside the opening crack obeys

AN TR T B A

Fig. 1. Geometry of a piezoelectric material with a Griffith crack along with the corresponding coordinates.
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Dif:) - 8(C)Eic)7 DEC) - 8(C>E£C), (6)

where &© = ¢.g is the dielectric permittivity of the crack interior, ¢, = 1 for a vacuum crack. The fact that
the crack opening displacement is small as compared to the crack length allows us to further assume that
E = E\9|,, which may be supposed to be a constant, given by

. A
EC©) — _
z ﬁuz ) (7)

where Au, and A¢ are the jumps of elastic displacement and potential across the crack. Furthermore,
making use of (6) the electric displacement inside the opening crack is governed by the following relations:

‘ Ad
(¢) — __ 40
D! € A (8)

which has also been used in dealing with certain crack problems such as Hao and Shen (1994), McMeeking
(2001), Liu et al. (2001), Xu and Rajapakse (2001), Wang and Jiang (2002), and Wang and Mai (2003). It is
interesting to note that impermeable and conducting cracks can be treated as the limiting cases of dielectric
cracks as £© — 0 and &¢© — oo, respectively.

For a Griffith crack embedded in an infinite piezoelectric body subjected to a uniform mechanical
tension ¢y and constant electric field £5° at infinity (see Fig. 1), remote mechanical and electric boundary
conditions can be written respectively below:

0(x,z) = oy, E.(x,z) = EY, z — 00, (9a)
0x(x,2) = 0, E.x,z) =0, X — 00 (9b)
0.(x,z) — 0, x? 422 — oo. (9¢)

In general, it is easy to measure and control the electric field strength, rather than the electric dis-
placement, in experiment. As a result, for electric boundary conditions, E{° is supposed to be prescribed. Of
course, the case when electric displacement is given at infinity can be solved in a similar manner, which
is omitted here. Here, applied electric fields parallel or anti-parallel to the poling axis are referred as to
positive or negative electric fields, respectively.

3. Solution of the problem

In this section, we consider a Griffith crack of length 2a lying at a plane perpendicular to the poling
direction. Obviously, it is sufficient to consider the upper half piezoelectric body. The electroelastic field in
the lower part can be directly given by symmetry from the counterpart in the upper part. Hence in what
follows we confine our attention to the upper half-plane.

3.1. General solution in terms of the Fourier integral

To solve the stated-above problem, following the analysis of Rajapakse (1997), we represent u,, u, and ¢
in terms of three generalized harmonic functions Fj(x,z) which are governed by
Fot+ 9 Fu=0, (10)
where 7? are three roots of the following characteristic equation:
ao)® + boy* + oy’ + dy = 0, (11)

where the constants ag, by, ¢y, and d, are given in Appendix A.



4142 X.-F. Li, K. Y. Lee | International Journal of Solids and Structures 41 (2004) 4137-4161

Consider a particular case of three distinct eigenvalues yjz. ( = 1,2,3), and other cases are similar, which
are omitted here for saving space. Further, if representing F;(x,z) by Fourier cosine integrals
~1

(x,2) = — EA,(&) e U< cos(éx) dé, (12)

0

for z > 0, where 4;(¢)’s are unknown functions to be determined through appropriate electric and elastic
boundary cond1t1ons, and Re(y;) is chosen larger than zero to guarantee that the first and second deriv-
atives of F;(x,z) with respect to x and z vanish at infinity, we can then get a general formal solution suitable
for dealing with the problem posed by (9), in terms of 4;(¢) as follows:

L (x,2) Z / &)e % sin(éx) dE + Byx, (13a)
3 ]
=Dy [ A cos(E0dé + B (13b)
j=1 0
3 00
2) =D ny / 4;(¢)e = cos(éx) A& + Baz, (13c)
=1 0

where By (k = 1,3,4) are unknown constants to be determined, and #;; and n,; are constants which are
determined by the following relations:

1 _ C13 Tt Cag tCaally; +eistly;  esp ters +eisty; — entlyy 2

- 2 (14)
cas + (€13 + cas)ny; + (€31 + ens)ny, C33M3; + €330y, €3303; = €3304 ’

Moreover, from the constitutive equations, expressions for the stresses and electric displacements in
terms of 4;(¢) are also obtainable. They are

O'xx X, Z Zﬁo// éA }'éZCOS(é)C) df+01131 +CI3B3 +€31B4, (153)
O'ZZ X, Z Zﬁl// éA ’fiZCOS(fx)dé—FC]}B] +C33B3 —|—€33B47 (ISb)
0u(r.2) Z b [ e s ac, (150)
3 00 ;
==y [ E(e 7 sinen) (154)
=1

3 o0
- Z ﬁ4j/ EA;(€)e % cos(Ex) dE + e3 By + e33B3 — €33By, (15¢)
=1 0
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where
Bo; = (c1amy; + 631714/-)”/? — C11y (16a)
By = (cxmy; + 633'14j)))12- —cn3, (16b)
Py = leaa(l +my;) + erstg v, (16c)
Bs; = leis(1+n3;) — enngly;, (16d)
Ba; = (exns; — 833114j)V? —es3r. (16e)

As a straightforward check, substitution of (15) into the equilibrium equations reveals that them are
satisfied identically. The remaining task is how to get unknown B; and 4;(¢) through appropriate electric
and elastic boundary conditions and further determine electroelastic field for the corresponding crack
problem.

3.2. Derivation of dual integral equations

Consideration of symmetry of the problem allows us to conclude that the shear stress at the crack plane
vanishes, i.e.

0(x,0) =0, —o0<x< 0. (17a)
Since attention is restricted to the upper half-plane, the following condition:

u(x,0) =0, ¢(x,0)=0, x| > a (17b)
must be supplemented because of symmetry of the problem. Besides, at the crack surfaces, electrome-
chanical boundary conditions

0:(x,0) =0, —a<x<a, (17¢)

D.(x,0) =D —a<x<a, (17d)

where D) is a parameter to be determined, governed by the relation (8).

Firstly, to look for three unknown constants B, (k = 1, 3, 4) involved in (15), application of the boundary
conditions at infinity in (9) results readily in a system of linear equations, which can be used to determine
uniquely B, (k = 1, 3,4). The final result is given in Appendix A. Knowledge of B, (k = 1, 3, 4) permits us to
further seek the disturbed electroelastic field of a piezoelectric body weakened by a Griffith crack. To this
end, by substituting the above results into (13) and (15), utilizing the boundary conditions (17a) yields

3
> Bydi(&) =0. (18)
j=1
Also, application of (15b) and (15e) to the conditions (17c) and (17d), respectively, leads to
3 0
~S 8, / £4,(8) cos(Ex)dE + 0 =0, —a<x<a, (19a)
J=1 0
3 0
=S by [ et@eos(enac DX =D, —a<x<a (19b)
j=1 0

with
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—€<C) 2]3‘:1 ’14ij f()oo Aj(é) COS(&X) dé

DO = —a<x<a (20a)
3 ) ’
Zj:l N3,7; fooo A_i(é) cos(¢éx)d¢
Dzoc _ C11€33 — 0132631 ‘780 + 033651 + 011653 - 3013633631 ten Ego (20b)
C11€33 — €73 C11€33 — C3

Additionally, from (13b) and (13c) in conjunction with the conditions in (17b) we have

3 o
Sy | A@eoseas =0, bz a (1a)
=1

3 .

Sy [ Af@cos(enai =0, K> o
=1

Thus we obtain coupled system of dual integral equations for 4;(¢) (j = 1,2,3) with a parameter D
governed by (20a). In the following, we first determine the electric displacement D© at the crack surfaces,
and then solve dual integral equations.

3.3. Electric displacement at the crack surfaces

In the resulting dual integral equations, an undetermined electric displacement D is involved. In this
subsection, we shall give an explicit analytic expression for calculating D© and a simple form of approx-
imating D'©. Since D is clearly independent of &, it immediately follows from (20a) that

oo 3
/ Z [D(°>173j + 8<°>114_,} 7,4;(&)cos(éx)dE =0, —a<x<a, (22)
0 j=1
which, together with (21), gives
3
Z [D(C)"hj + 8(C)Vl4,~] VjAj(é) =0. (23)

J=1

Now we arrive at two Eqgs. (18) and (23) for 4,(&) (j = 1,2, 3), which are solvable up to two unknowns.
In other words, two unknowns may be represented by the remaining one. To achieve this, we may choose a
new intermediate auxiliary function 4(&) such that

4,(€) = a;4(0), (24)

where a;’s are constants. Putting the above into (18) and (23) yields, respectively,

3
Zﬁz‘/‘a_/ =0, (253)
=

[D(C)r]3j + 8(0)174]»] a4 =0. (25b)

3
J=1
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Furthermore, substituting (24) into (19a) and (19b), a comparison results in
3 3
o Y Bya;+ [DY —DX]> " pia;=0. (25¢)
J=1 J=1

Accordingly, Egs. (25a), (25b) and (25¢) form a system of linear algebraic equations for a;, which can be
rewritten in a compact form

a 0
Alay| =10, (26)
as 0
with
B [D(c) - Dzoc] + Ba0g° ﬁlZ[D(C) _D?C} + B0y’ /313[D<C> _Dﬂ + By304°
A= P P P : (27)

[1731D(C) + 77413(C>] Y1 [7732D(C> + ’742“3@} V2 [’733D(C) + ’7433<C)]V3

In order to obtain a nontrivial solution of this equation, the determinant of the matrix A4 must take zero,
ie.

det(A) = 0. (28)

Expanding this determinant yields a quadric equation for D). In particular, for several special situations,
D© may be determined via some simple expressions.
(I) In the absence of applied mechanical loading at infinity, this situation gives

: det [By, By, 3]
DO —p® or p©— _ WL IFHI () 29
: det [ﬁlaﬁbnl] ( )

Hereafter f§, denotes the vector composed of (ﬁk,,ﬁkz,[)’“)T (k=0,1,...,4), and 5,_, denotes the vector
composed of (1,171, MaVas n,‘3y3)T (k = 3,4), T being the transposition. Obviously, the first solution pertains
to the case where a piezoelectric body without crack or two crack surfaces contact each other, and the
second solution is reliant on the material properties and not on applied loading suitable for an opening
crack. From this, one further finds electric field inside the opening crack to be a constant
—det [B, B,,12]/ det [By, B, 1], independent of applied electric field and the dielectric permittivity.

(IT) In the case of an impermeable crack, £ is approximately assumed to be zero. Here, from the ob-
tained solution we find

00 det [ﬂ47 ﬁZ» 'h}

D=0 or DY =DF-g¢ :
0 det [By, By, mi]

(30)

Clearly, from the physical interpretation, the former D = 0 is suitable only for an opening crack and the
other solution for a closed crack.
(IIT) For a conducting crack, &© is commonly set to be infinity. In this situation, we obtain

det [By, Br, o)
D(c) :Doo _ 00 4y P25 12
: 7% det [y, By, 5]’

which indicates that D is a linear function of applied electric loading as well as applied mechanical
loading.

(31)
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In general, Eq. (28) admits two roots for a dielectric crack, expressed as

D — —m; \/m% — 4m0m27 (32)

2m2

where my, m;, and m, are given in Appendix A. And only one is reasonable and the other is superfluous,
which should be neglected. Since ¢, is finite and lies in a range of 0 to 0o, corresponding to an impermeable
and conducting cracks, respectively, the corresponding electric displacement D inside the opening crack
should be located at the range between two limiting values corresponding to ¢ = 0 and 1, respectively.
Thus, an acceptable D© may be selected. An alternative approach for determining an acceptable D is to
look for the one such that Au,(x,0) > 0, the physical interpretation of which is obviously to avoid pene-
tration of two crack surfaces. By computing for many practical examples, we find that, D selected from
the above-mentioned two methods are identical. This result indicates that apart from the material prop-
erties of the piezoelectric matrix, the electric displacement D) of the crack interior is also dependent on the
dielectric permittivity of the crack interior. Moreover, not only applied electric loading but also on applied
mechanical loading at infinity have pronounced influence on D©). The dependence of D' on Eg° for various
dielectric permittivity of the crack interior in a PZT-4 ceramic with a crack is shown in Fig. 2, from which it
is seen for a dielectric crack, the electric displacement at the crack surfaces is close to that for a conducting
crack, and far away from that for an impermeable crack. Especially, it is interesting to note that D does
not vanish as E£° is less than about —8.2 kV/cm in Fig. 2, inferring that at this stage the crack does not open
and D is therefore determined by the second in (30). Further, due to the complexity of dependence (32) of
D on ¢ (or ¢,) and applied loading, we present an approximate linear relation between D© and applied
electric fields for computing D© by the following form:

D) = JpEy, (33)
with

_ g(c)gZ det [181 ) ﬁZa ’72]
S(C) det [ﬁhﬁZ? ]72] + 080 det [BM ﬂ27 7]1] - glo-(o)C det [Bla ﬁ27 ]71] ’

A (34a)

x107
20
PZT-4 °°
6, =8MPa
2
1
10
— 0.5
e
S
a 0 -
sr:O
-10
T T T T T T T T T T T 1
-10 -5 0 5 10 15 20

E .’ (kV/cm)

Fig. 2. Electric displacement at the crack surfaces versus applied electric field with ¢i° = 8 MPa for various values of ¢, for a PZT-4
ceramic.
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Table 1
The relevant material properties
Elastic stiffnesses Piezoelectric constants (C/m?) Dielectric permittivities
(x10'° N/m?) (x1071° F/m)
c1 €33 Ca4 C12 C13 €3] €33 €1s &n €33
PZT-4 139 11.3 2.56 7.78 7.43 -6.98 13.84 13.44 60 54.7
where
_C11€33 — C13€3] o 033e§1 + C1le§3 — 2ci3e33e3; 34b
Y & = 2 ) ( )
C11C33 — C73 C11€33 — C13

which is very accurate for £j° taking in a range from —10 to 10 kV/cm. For example, for a PZT-4 ceramic
with relevant material properties listed in Table 1, the exact and approximate electric displacements, D)
and D;;), at the vacuum crack surfaces are very close for ¢)° = 5 and 20 MPa, which is displayed in Fig. 3.

3.4. Full electroelastic field in the entire piezoelectric plane

Once D is determined, nontrivial solution a; can be expressed in terms of D' via solving equations
arbitrary two equations among (25a), (25b) and (25c). For example, solving (25a) and (25¢) we obtain

[02/01} o _{ B B3 -
as/a  LoFBn+ [D(C) _Dzoo]ﬁlz 05 Bas + [D(C) - sz]ﬁm
o { B
o5 Bar + [D(C> _Dzoc]ﬁll .
Next, applying the boundary conditions (19a) and (21a) we get a pair of simultaneous dual integral
equations for A(¢)

(35)

3

x10°
15

PZT-4, sr=1
D(C) 7

- (c)
10 D,,

D (C/m?)

o, =20MPa

-10 T T T T T T T T T 1
-10 -5 0 5 10 15

E,” (kV/cm)

Fig. 3. Comparison of exact and approximate electric displacements at the crack surfaces for a vacuum crack under ¢j° =5 and
20 MPa.
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/ @ eos(@)de =T e <a, (36a)
0 m
/ T A(E)cos(B0)dE =0, x| > a, (36b)
0
where
3
Kn = Pia. (37)
=1

Hence, employing standard theory of dual integral equations, a solution of the above equations is readily
found to be
aJi(&éa) off
A(E) = . (38)
where J;(+) is the first-order Bessel function of the first kind.

It is pointed out that the above result is only suitable for the case where applied mechanical loading at
infinity is nonzero, i.e. oy # 0. Evidently, in the absence of mechanical loading, in view of the coupling
characteristic, applied electric loading also causes deformation of a piezoelectric body and further may give
rise to crack opening. However, in the case of ¢;° = 0 the above result gives 4(¢) = 0, which fails to cause
crack to open. In order to modify the above result, in this case we require k,, = 213.:1 Bi,a; = 0. Hence, Eq.
(19a) is an identity. Taking into account that the opening of crack is attributed to application of electric
loading for this case, we therefore use Eq. (19b) instead of Eq. (19a) to obtain dual integral equations
similar to (36). An analogous treatment gives a solution as

_ aJi(éa) [DX — DY

A =P = (39)
where
3
K, = Z Baja;. (40)
J=1

In view of (25¢), it is readily seen that in the presence of mechanical loading, the solution (38) coincides with
(39). Likely, (39) is valid only for D= # D). For convenience, we rewrite these two results in a uniform
form, i.e.

aJl(éa) P
A(¢) = — 41
(=220, (41)
where
P=oy, K=kKn asag; #0, (42)
P=D*-DY k=gx, asaol=0. (43)

With the above obtained results, a full electroelastic field in the entire piezoelectric plane with a dielectric
crack can be determined. This can be achieved by substituting (41) into (13) for elastic displacements and
potential. Making use of some equalities involving infinite integrals of Bessel functions (Fabrikant, 2003),
explicit expressions for the elastic displacements and potential are obtained as follows:
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P
uy(x,z) = p Za‘, {x — /X2 = lfj(x,z)} + Byx, (44a)
=
Z 3,74 [\/2,)‘27) - “/,-Z} + Biz, (44b)
Z”M,/,a/[ 5(x,2) —x* = ij} + Baz, (44c¢)

where some known integral identities have been utilized, which, together with B, (k = 1, 3,4) appearing in
the above expressions, are given in Appendix A, and

1ytws) =3 |yt + a7 = a2+ 27, (452)

l(x,z) :% [\/(a +x)° + (7;2) 24 \/ (a—x)’ + (v;2 )2} (45b)

In a similar fashion, from (15), we can further give a complete solution of elastic stresses, strains, electric
displacements, and electric fields in the entire plane. Or rather, the distribution of electroelastic field in the
entire plane is

Ox(%,2) Zﬁoﬂ; hy(x,z) — 1], 02:(x,2) Zﬁljajhz, X,z) (46a)
O(x,z) = —— Zﬁzﬂ,hl/ X,Z), (46b)
p3
Spr (X, 2) - Z hz, X,Z) ] S2(x,2) Zn;/y/a, hyj(x,z) — 1] (46¢)
3
Se(x,2) = ~ 3 Z (r]3j )yjajhlj(x,z), (46d)
j=1
p 3
D, (x,z) Z Byajhy(x.2),  Di(x,2) = > Byaj[hoy(x,2) — 1] + D, (46¢)
=1
P P< ,
z) = p Zm/.yjajh]j(x,z), E.(x,z) = - Zm/.yjaj [hzj(x,z) - l], (46f)
= =
where
Lj(x,2)\/a® = 13,(x,2) b(x,2)\/53,(x,2) — @®
hyj(x,2) = hyj(x, 2 ' (47)

Bi(x,2) = I},(x,2) B;(x,2) — 13,(x, 2)
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From the above, explicit analytic expressions for the entire electroelastic field are given through ele-
mentary functions. Generally speaking, y;’s are probably related to complex numbers, but by a direct check
one can find that all the quantities in the above-obtained electroelastic field are completely real. From a
viewpoint, the derived solution is reasonable and correct. In reality, alternative expressions in terms of the

real and imaginary parts of relevant complex functions involving 4/ (x + iyjz)2 — a? can also be given, which
are omitted here. As indicated by Fabrikant (2003), it is very difficult to separate the corresponding real and
imaginary parts into explicit expressions. However, the solution provided here is in simple, analytic, and
explicit form.

On the other hand, if we confine our attention to the crack plane, we deduce immediately elastic dis-
placements and potential, from the results (44), as

u(x,0) = = g [x —H(x| — a)Vx? — 2|, (48a)
K 45
PH (a — e
wir.0) = OB S v, (48b)
=1
PH(a — |x]) &
p(e.0) = TTCBD S o Va2 (45¢)
=1
and elastic stresses, electric displacement, and electric field, from the results (46), as
o ’lx
0..(x,0) = %H(M —a), (49a)
X2 —a
0.:(x,0) =0, (49b)
DX — D
D.(x,0) = MH(M —a)+ D", (49¢c)
22
E.(x,0) Pi 7 [1 - ]*Ex H(l - )+ 2 Hia— ) (49d)
o(x,0) =< — viai|l — ———— x| —a)+——H(a — |x|),
K 2 Na;7V;4 N 0 £©

where H(¢) denotes the Heaviside unit step function, i.e. H(¢) =1 for ¢t > 0 and H(¢) =0 for ¢ < 0.

Obviously, a..(x,0) at the crack plane is independent of applied electric loading and material properties.
Nevertheless, the distribution of ¢..(x,z) (z # 0) around the crack tip is reliant on the material properties,
which is apparently seen from (46a) owing to the dependence relation of «,, and a; on electric loading and
the material properties. In contrast, in addition to applied electric loading and material properties, not only
D.(x,z) (z # 0) around the crack tip but also D,(x,0) at the crack plane depends upon applied mechanical
loading, since the electric displacement D) at the crack surfaces is determined by electric loading as well as
mechanical loading.

4. Fracture criterion

In studying the stability of a cracked piezoelectric structure, some facture criteria such as those of the
maximum hoop stress and energy release rate in classical linear elastic fracture mechanics cannot be directly
generalized to piezoelectric materials, since there exists a significant discrepancy between experimental
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observations and theoretical predictions based on these criteria. In this section, MHS is suggested as a
fracture criterion for piezoelectric materials, and the theoretical predictions based on this criterion agree
closely with experimental data.

Fracture parameters are intimately relating to asymptotic field around the crack tip. Thus, prior to the
presentation of this fracture criterion, it is expedient to determine asymptotic expressions for electroelastic
field around the crack tip. For this purpose, we introduce a polar coordinate system (7, 6) with the origins at
the right crack tip, as shown in Fig. 1, which satisfies

r=v\/(x—a)’+22,  0=tan"'[z/(x — a)]. (50)

In the close vicinity of the crack tip, i.e. » < a, we have

lj~a +§ {cos(@) — \/0052(0) + 92 sinZ(Q)} : (51a)

Lj~a +g [cos(@) + /cos?(0) + 77 sinz((?)} : (51b)

Upon substitution of these into (46), by neglecting some higher-order infinitesimal terms, the asymptotic
expressions for electroelastic field in the vicinity of the crack tip are derived below:

_oxx(ra 9) P a 3 ﬁo_iajﬁj(e)
ulr0) [ =\ 25| Braf0) | +0(), (520)
L 0. (r,0) " = _ﬁZJajflj(e)
_Sxx(rv 9) ! P a 3 i 7ajf2j(6)
sl | =2 ST npa() | o), (52)
selr,0) ] VA [ ()t (0)/2
[ Di(r,0) ] , [ —Ba:/1;(0)
P afri(0
20| = Va2 | ma | +om: (520
L Ez(ra 9) _ " L _7I4j7)_?ajf2j(0)
where f1;(0) and f>;(0) denote the functions of angle distribution, defined by
fi0) = 1 LY P—0 , (53)
{‘/cosz(é)) + 73 sin’(0) 2 \/cosz(é)) + 73 sin’(0)
£(0) = 1 Ly cos(6) , (53b)
{/0052(0) + 73 sin’(0) 2 \/cosz(e) + 73 sin’(0)

which are universal and pertain to all crack configurations and loading conditions, but depend on the roots
of the characteristic equation (11).

From the above, the intensity factors of stress, strain, electric-displacement and electric-field near the
crack tip, according to their definitions
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K? = lim \/2n(x — a)q(x,0), (54)

x—at

where ¢ stands for o_., s.., D., and E_, respectively, can be evaluated as

p 3
= gy°\/1a K = - ijyfq,-\/na, (55a)
=1
P
K? = [D¥ - D" \/na, Kf = - ijyfaj\/na. (55b)
1

As a by-production, another important fracture parameter, the elastic 7-stress, defined as the nonsingular
term of asymptotic field o,, near the crack tip and is used to characterize constraint around the crack tip, is
found from (46a) to be

3
*g Zﬁoﬂr (56)
j=1

Clearly the elastic T-stress is dependent on applied electric loading and the material properties, while K is
independent of applied electric loading and the material properties. No matter how applied electric loading
varies, stress intensity factor maintains unchanged, implying that stress intensity factors near the crack tip is
inapplicable to predicting crack growth of piezoelectric materials.

On the other hand, for a piezoelectric material, the total energy release rate, defined as the released
energy per unit length during crack growth under combined electromechanical loading, consists of two
parts: G = G™ + G°, G™ and G° are so-called mechanical strain energy release rate and electric energy re-
lease rate, which can respectively be evaluated by the following integrals (0 < 6 < a):

—})15%%/ 0=(r,0)[u(6 —r,m) — u(0 — r, — m)]dr, (57)
_yng—/ D.(r,0)[$(6 — r,7) — $(6 — r, — m)] dr, (58)

where u. is also influenced by applied electric field because of the coupling characteristic, and aside from
electric loading, ¢ is also related to mechanical loading. Substituting asymptotic expressions for the stress
and displacement into the above integrals yields

P
Gn = 190 an,/,a,, G = L Zm,/,ap (59)

where P and x are defined as before. The total energy release rate G is therefore given by

naP
l Z”Sjyjaj Z”4jyja/‘| (60)

or

a P < o | A c
G="— Z: [Gzz —@D( (D - D' ))]’73./'“/1“/‘ (e
=

in view of (25b). Especially, for an impermeable crack, ¢© = 0, and D® = 0; so the above result reduces to
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(o) (Dx)?
. 37,4 +

HaiV;4; ] - (62)

3
G:%Z
J=

Computational results indicate that, similar to that for an impermeable crack, G° for a dielectric crack is
also always negative regardless of positive or negative electric fields, inferring that any electric field impedes
crack growth for piezoelectric materials, contrary to experimental results. If adopting the viewpoint that G°
is responsible for the breakdown of electric behavior in dielectrics (Garboczi, 1988; Ouyang and Lee, 1998)
and G™ for the failure of mechanical behavior (Park and Sun, 1995; Guiu et al., 2003), we neglect G° and
have G = G™. Furthermore, G™ = 0 in the absence of mechanical loading, which is inconsistency with
experimental findings that purely electric fields can also drive crack propagation in a poled ferroelectric
ceramic (Cao and Evans, 1994; Schneider and Heyer, 1999; Shang and Tan, 2001; dos Santos e Lucato
et al., 2002).

In the present paper, the MHS criterion (Ayari and Ye, 1995; Chang, 1981) is suggested as a fracture
criterion. A basic reason is that a crack can advance ahead only because of the result of crack deformation,
which can be generated by not only mechanical loading but also electric loading. Since the MHS in the close
vicinity of the crack tip (» < a) can be characterized by the strain intensity factor K*, the MHS criterion, in
effect, is equivalent to the strain intensity factor criterion. It follows from the second in (55a) that K* is
apparently dependent on mechanical loading as well as electric loading, implying that crack growth can be
driven by both mechanical loading and electric loading, even by purely electric fields. Similar to the
hypotheses for the maximum hoop stress criterion, for the MHS criterion the following hypotheses are
adopted (Ayari and Ye, 1995; Chang, 1981).

Hypothesis 1. Crack initiation starts when the maximum of the hoop strain sy reaches a critical value,
which is a material constant.

Hypothesis 2. Crack initiation is assumed to occur in the direction along which sg arrives at a maximum.

5. Numerical results and discussions

To demonstrate the effectiveness of the MHS criterion as a fracture criterion of piezoelectric materials, in
this section, as a numerical example we consider a commercially available PZT-4 ceramic and study the
influence of applied electric field on crack growth through the MHS criterion. When a PZT-4 is poled along
the z-axis, it exhibits transversely isotropic behavior and the relevant material properties are given in Table
1 (Park and Sun, 1995). Here of interest is the case where a plane crack perpendicular to the poling axis
penetrates through the PZT-4 ceramic along the y-axis.

In order to determine the direction of crack initiation, the angle distribution of the hoop strain, nor-
malized by multiplying sg(r, 0) by \/2r/a, around the crack tip is plotted for a vacuum dielectric-crack with
different applied electric fields in the presence and absence of mechanical loading in Figs. 4 and 5,
respectively. It is readily found from Fig. 4 that the MHS sy occurs at 0 = 0°, indicating that crack
propagates along the crack plane and cannot branch or deflect for any combined electromechanical
loading, which agrees with the experimental observations by Park and Sun (1995) and with the theoretical
predictions through the finite element method according to the energy release rate criterion (Kumar and
Singh, 1998). Also, the MHS becomes larger for a positive electric field, or less for a negative electric field
than that in purely mechanical loading, inferring that positive electric fields promote crack growth and
negative ones hinder crack growth, coinciding qualitatively with experiment findings of Park and Sun
(1995). Moreover, irrespective of the sign of applied electric fields, the strain in front of the crack tip sg is
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Fig. 4. Angle distribution of the hoop strain with ¢;° = 8 MPa for a PZT ceramic containing a vacuum crack.
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Fig. 5. Angle distribution of the hoop strain with ¢° = 0 for a PZT ceramic containing a vacuum crack.

tensile in a range of |0 < 62°, 63°, and 64° for E° = —5, 0, and 5 kV/cm, respectively, and is compressive in
other regions, causing the crack to open and even to propagate along the crack plane. In contrast, from
(492a) the maximum hoop stress gy at § = 0 is not reliant on applied electric fields, although the maximum
hoop stress agy also takes place at 0 = 0 and ogy when 0 # 0 depends slightly on electric fields, which
indicates that crack initiation is controlled by the MHS rather than the maximum hoop stress. It is worth
noting that in the previous study (Pak, 1992; Sosa, 1992; Kumar and Singh, 1996), enough high negative
electric fields may cause a crack to deviate from the original crack plane in crack growth for an imper-
meable crack. However, the present study indicates that this case seems not to take place, since negative
electric fields cause crack opening to decrease and even to close, and in this case the electric displacement at
the crack surfaces are a nonvanishing constant rather than zero due to the perfect contact of two crack
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surfaces. In fact, according to the energy release rate criterion, a crack indeed propagates in a straight line
along the crack plane for any combined electromechanical loading (Kumar and Singh, 1998), identical to
that according to the MHS criterion. Furthermore, in the absence of mechanical loading (Fig. 5), purely
electric fields, if it rises high enough, may drive crack propagation.

Dependence of the MHS on applied electric fields is given in the presence and absence of mechanical
loading, ¢f° = 8 MPa, and 0, for different dielectric permittivities of the crack interior in Figs. 6(a) and 7(a),
respectively. For comparison, in Figs. 6(b) and 7(b), the normalized crack center opening displacement,
1,(0,0)/a, is presented for the corresponding cases, since u.(0,0)/a is also a significant fracture parameter
accounting for crack opening. From these figures we find that both the MHS and the normalized crack
center opening displacement remain unchanged for a conducting crack, which depend only upon applied
mechanical loading and not only electric fields. This is an obvious conclusion for a conducting crack. As
expected, purely electric fields fail to generate any MHS and crack opening displacement for a conducting
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Fig. 6. (a) MHS and (b) crack center opening displacement versus applied electric field with ¢f° = 8 MPa for a cracked PZT.
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Fig. 7. (a) MHS and (b) crack center opening displacement versus applied electric field with ¢j° = 0 for a cracked PZT.

crack. However, for an impermeable crack with the relative dielectric constant ¢, = 0 of the crack interior,
the MHS ahead of the crack tip has a plateau and exhibits constant compressive behavior in a range of
lower applied electric fields. From Fig. 6(b) we find that at this stage, there is no crack opening dis-
placement. In other words, under such combined electromechanical loading, crack does not open and
maintains closed for an enough high negative electric field, which can be explained by the fact that a
negative electric field cause a piezoelectric material to shrink in the poling axis. And when applied electric
fields exceed a certain (negative) value, the MHS as well as the crack center opening displacement rises in a
straight line as electric field is raised. For a real vacuum crack with ¢, = 1, a plateau similar to those for an
impermeable crack has not been found when electric field lies in the interval [—10, 20]. Moreover, the MHS
is always tensile and the crack is always open in the presence of mechanical loading ¢f° = 8 MPa, although
applied negative electric fields decrease the MHS as well as the crack center opening displacement. It is also
observed from Fig. 6(a) that the MHS is increased with increasing applied electric field for a vacuum
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dielectric-crack, which again implies the consistency with experimental results. And the same trend is visible
for the crack center opening displacement in Fig. 6(b).

In the absence of mechanical loading, from Fig. 7 it is seen that any purely electric fields fail to drive a
conducting crack to open, which is as expected. For an impermeable crack with ¢, = 0, a crack immediately
opens provided that positive electric fields are applied, and maintains closed provided that negative electric
fields are applied. However, for a vacuum crack with ¢, = 1, the turning point of applied electric field from
a closed crack to a open crack is shifted from zero to a higher positive electric field, which is clearly due to
the influence of the dielectric permittivity of the crack interior on crack growth. From the above, for a
nonconducting crack, an important conclusion can be drawn out. That is, purely electric fields can also
drive fatigue crack growth, which may explain crack growth driven by purely electric fields observed in a
poled ferroelectric ceramic in experiment (Cao and Evans, 1994; Schneider and Heyer, 1999; Shang and
Tan, 2001). It is noted that this phenomenon cannot be predicted according to the fracture criterion of the
mechanical strain energy release rate (Park and Sun, 1995), since it vanishes in the absence of mechanical
loading.

Finally, based on the MHS criterion proposed in the present paper, a comparison between the theo-
retical predictions and the experimental results of Park and Sun (1995) is made. The experimental setup of a
compact tension specimen adopted by Park and Sun is depicted in Fig. 8. Applied electric field E was

thin electrode \

A)F

crack \

Az poling direction

e
X

g If |

thin electrode /

Fig. 8. Schematic diagram of a compact tension specimen subjected to electromechanical loadings.
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Fig. 9. Comparison of theoretical predictions and experimental measures for PZT-4 ceramic.
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generated by controlling a voltage between two opposite top and bottom surface thin electrodes. Under a
certain electric field, mechanical tensive loading was applied, and the procedure of testing was to increase
the tensive load until fracture occurred.

From the experimental data of Park and Sun (1995), the fracture initiation loads F under different
electric fields are shown in Fig. 9. Especially, in the absence of applied electric field, the fracture load F is
estimated about 93 N, from which we derive a critical value of the MHS. In what follows we start with this
critical value. According to the MHS criterion, the relation between the fracture loads F and applied
electric fields £5° should be lie at a certain contour line of s¢y equal to the critical value, which is displayed in
Fig. 9. From Fig. 9, it is readily seen that the theoretical predictions in the presence of applied electric field
give the fracture loads F' = 136, 111, 78, 66 N corresponding to E;° = —5, =2.5, 2.5, 5 kV/cm, respectively,
in satisfactory agreement with the experimental measures given by Park and Sun (1995). This indicates that
the MHS criterion is a potential fracture criterion for piezoelectric materials. Of course, it is worth noting
that like other fracture criteria, the MHS criterion is also a macroscopic one which does not reflect the
mesomechanical and micromechanical behaviors of piezoelectric materials.

6. Conclusions

In addition to mechanical stress, purely electric loading also produce deformation due to the coupling
feature between elastic and electric behaviors of piezoelectric materials. Crack opening is only due to the
direct results of crack deformation, and crack growth is therefore attributed not only to mechanical stress
but also to electric loading. Based on this assumption, the MHS is suggested as a fracture criterion of
piezoelectric materials. Using this criterion, relevant experimental results can be successfully explained, that
is, applied electric fields can enhance and hinder crack propagation, depending on positive and negative
electric fields. Furthermore, purely electric field may also drive crack growth, regardless of the presence of
applied mechanical loading. Some main conclusions are summarized as follows.

e The MHS is suggested as an effective facture criterion. The theoretical predictions are in excellent agree-
ment with experimental data.

e The electric displacement at the crack surfaces depends nonlinearly upon applied electromechanical
loading for a dielectric crack. A linear approximation of the electric displacement at the crack surface
on applied electric field is present and exhibits a satisfactory accuracy.

e The complete electroelastic field for a dielectric crack is obtained in terms of elementary functions, and
the asymptotic crack-tip field is also determined in terms of two unified angle distribution functions.
Impermeable and conducting cracks are special cases of dielectric crack as the dielectric permittivity
of the crack interior vanishes and approaches infinity, respectively.
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Appendix A

The constants appearing in the characteristic equation (11) are

ayg = Cy4 (6’33833 + 653), (Al)
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by = —2cueises3 — C11€§3 — c33(casen + cnigss) + e3(cis + 044)2 + 2e33(c13 + caa) (€31 + ers)

> 2
— e — cxles +eis),

co = 2cyieisess + C44€%5 + cii(essén + castss) — enfers + 044)2 — 2ey5(c13 + caa)(e31 + e3s)

2 2
+ cyyen + caales +ers),

dy = —6’11(044811 + 6%5)-

By solving the resulting equations, the unknown constants B, (k = 1,3,4) are obtained as

—c1300° + (cxe3 — cizess) EY°

Bl = 2 )
C11C33 — C3
_cnoy 4 (criess — cpzes )EY
By = . :
C11€33 — €73
_ 00
By = —EF,

In Eq. (32), the coefficients mg, m;, and m, are, respectively,

my = S(C)O'(O)C det[By, Br, o] — 8(c>D§O det[B, By, ),

my =g det[By, By, my] + o5 det[By, By, m] — D det[By, By, m],

my = det[By, B, m]-
In deriving (44) and (46), the following integral identities:

/OO le‘“le (a&) cos(b&)dé _! [ B—b— c} ,
o ¢ a

/ —e ““Jy(aé)sin(b¢)dé = é{b\/bzl%],

/0 CAJl(aé) COS(bf)dé :;__ﬂ7

[ entasina g =1 ED,
0 -4

have been utilized, which can be readily shown from Fabrikant (2003), where Re(c) > |Im(a £ b)|,

I —%{\/(a+b)2+c2—\/(a_b)2+02]’

12;[\/(a+b)2+c2+\/(a—b)2+c2].

4159

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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