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Abstract

A piezoelectric material with a Griffith crack perpendicular to the poling axis is analyzed within the framework of the

theory of linear piezoelectricity. Using exact electric boundary conditions at the crack surfaces, the nonlinear behavior

between the electric displacement at the crack faces and applied loading is given, and it can be approximated by a linear

relation on applied electric field. The Fourier transform technique is employed to reduce the mixed boundary value

problem to dual integral equations. Solving resulting equations, expressions for the electroelastic field in the entire plane

are obtained explicitly for a cracked piezoelectric material subjected to uniform combined electromechanical loading.

The distribution of asymptotic field and the intensity factors of electroelastic field as well as the elastic T -stress are

determined. Particularly, the maximum hoop strain shh is suggested as a fracture criterion for piezoelectric materials.

Based on this criterion, relevant experimental results can be explained successfully. As an illustrative example, theo-

retical predictions for PZT-4 ceramic with a crack are in excellent agreement with existing experimental data, not only

in qualitative behavior but also in quantitative results.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric/ferroelectric ceramics have been used widely in techniques such as actuators, sensors,
transducers, etc. due to the intrinsic coupling feature between elastic and electric behaviors (Rao and Sunar,

1994). However, a main disadvantage is that they are very susceptible to fracture because of their brit-

tleness. Owing to various causes, cracks or flaws are inevitably present in these materials, which gives rise to

electroelastic field concentration under applied electromechanical loading, rising high enough to cause the

crack advance, and finally leads to serious degradation of the performance of piezoelectric materials

(Pisarenko et al., 1985; Tobin and Pak, 1993; etc.). To understand the failure mechanism of piezoelectric

materials and maintain the stability of cracked piezoelectric structures operating in an environment of
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combined electromechanical loading, the analysis of elastic and electric behaviors is prerequisite. So far,

great efforts in theory have been made on this field (e.g. Suo et al., 1992; Pak, 1990, 1992; Sosa, 1992; Dunn,

1994; Sosa and Khutoryansky, 1996; Zhang et al., 1998, Ru, 1999; Gao and Fan, 1999; Shindo et al., 2000;

McMeeking, 2001; Xu and Rajapakse, 2001; Liu and Hsia, 2003; etc.) In particular, a significant matter is
to establish fracture criterion applicable to piezoelectric materials.

As we know, within the framework of the theory of linear elastic fracture mechanics there exist many

fracture criteria for a purely elastic medium, and these criteria mainly contain those of stress intensity

factor, energy release rate (or J -integral, crack driving force), energy density factor, etc. However, the

above-mentioned these criteria for a purely elastic medium seem unlikely to generalize directly to piezo-

electric materials due to the introduction of electric field along with the coupling of electric and elastic

fields. For example, the stress intensity factor criterion is clearly unsuitable for a cracked piezoelectric

material, since stress intensity factors near a crack tip are independent of applied electric loading provided
that applied stress is prescribed regardless of an impermeable crack (Pak, 1992; Sosa, 1992) or a permeable

crack (Sosa and Khutoryansky, 1996; Zhang et al., 1998; Gao and Fan, 1999; Shindo et al., 2000). It implies

that crack growth depends only upon applied mechanical stress, not upon electric loading, which is

inconsistency with the experimental observations that a positive electric field promotes crack growth and a

negative one impedes crack growth.

On the other hand, based on the energy release rate criterion, it is readily shown that the total energy

release rate G is composed of two parts, G ¼ Gm þ Ge, one corresponding to the mechanical part Gm and

the other to the electric part Ge. Moreover, Ge ¼ 0 for a permeable crack, leading to applied electric fields
have no influence on crack advance, which is clearly unreasonable, while Ge < 0 for an impermeable crack

under positive and negative electric fields, indicating that applied electric fields always hinder crack

propagation irrespective of their directions, which is contradictory to the experimental results. To amend

this drawback, some modified models have been proposed. Gao et al. (1997) and Fulton and Gao (2001)

adopted a multiscale viewpoint, assumed electric nonlinearity ahead of the crack tip and proposed a local

energy release rate as a fracture criterion accounting for crack propagation.

Based on the fact that crack growth is a process of mechanical deformation, Park and Sun (1995)

formulated mechanical strain energy release rate as a fracture criterion of piezoelectric materials, and re-
vealed that the theoretical prediction is in accordance with their experimental data. However, since the

released mechanical energy, not the total energy, was only considered during crack growth, the effect of Ge

on crack growth is dropped. Similarly, adopting small scale electric saturation in front of the crack tip (Gao

et al., 1997), Fang et al. (1999) evaluated the energy release rate and found that Ge ¼ 0 in this case, leading

to that G is identical to Gm. Recently, the analysis by Guiu et al. (2003) also indicates that the energy release

rate or crack extension force is, indeed, not suitable parameter for piezoelectric materials, and that the rate

of mechanical work is an acceptable criterion. Now, a clear understanding of the roles of Ge in the fracture

of piezoelectric materials is still lacking. In particular, for cracked dielectrics Ge is introduced in analogy
with energy release rate in linear elastic fracture mechanics and used to characterize breakdown of electric

behavior in dielectrics (Garboczi, 1988; Ouyang and Lee, 1998). In other words, Ge affects only electric

breakdown and does not affect crack (mechanical) growth. According to this viewpoint, the role of Ge in

piezoelectric materials can account for electric breakdown of piezoelectric materials and only Gm affects

mechanical failure of piezoelectric materials. Further, in theory if imposing all the piezoelectric constants

vanish, meaning that a piezoelectric material reduces to an elastic dielectric without coupling between

mechanical deformation and electric field, the influence of electric field, of course, is independent of crack

growth. Nevertheless, under such circumstances, the total energy release rate G is still composed of Gm and
Ge, and the contribution of Ge on crack propagation is visible, which is clearly contrary to practical situ-

ation.

Furthermore, crack growth driven by purely electric fields in poled ferroelectrics has been observed in

experiment (Cao and Evans, 1994; Schneider and Heyer, 1999; Shang and Tan, 2001; dos Santos e Lucato
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et al., 2002; etc.). Within the framework of linear piezoelectricity, Gm fails to predict crack advance in the

absence of mechanical loading, since in this case Gm ¼ 0. Hence, Hwang et al. (1995), and Yang and Zhu

(1998) proposed domain switching zone around the crack tip responsible for the anisotropy of fracture

toughness induced by electric fields.
In this paper, fracture analysis of cracked piezoelectric materials is made, and maximum hoop

strain (MHS) is suggested as a fracture criterion of piezoelectric materials. This paper is organized as

follows. In Section 2, basic theory as well as exact natural electric boundary conditions at the crack

surfaces are given. Section 3 is devoted to determining the complete electroelastic field of a piezo-

electric material containing a crack perpendicular to the poling axis, by using the Fourier transform

technique and solving dual integral equations. Meanwhile, the nonlinear behavior of electric dis-

placement at the crack surfaces is determined. In Section 4, the crack tip asymptotic fields are ob-

tained. Further the field intensity factors are determined, and the MHS criterion is presented. As an
example, in Section 5 a PZT-4 ceramic containing a crack is considered. A comparison of theoretical

predictions with existing experimental results is made, inferring the effectiveness of the MHS criterion

for piezoelectric materials.
2. Statement of the problem

2.1. Basic equations

Consider an infinite transversely isotropic piezoelectric body with the poling axis as the z-axis and the

isotropic plane as the xy-plane. With the framework of the theory of linear piezoelectricity, the constitutive

equations restricted to the xoz-plane take the form
rxx ¼ c11sxx þ c13szz � e31Ez; ð1aÞ

rzz ¼ c13sxx þ c33szz � e33Ez; ð1bÞ

rxz ¼ 2c44szx � e15Ex; ð1cÞ

Dx ¼ 2e15szx þ e11Ex; ð1dÞ

Dz ¼ e31sxx þ e33szz þ e33Ez; ð1eÞ

where cij, eij, and eij are the elastic stiffnesses, the dielectric permittivities, the piezoelectric constants,

respectively. Here the components of strain and electric field can be expressed in terms of elastic dis-

placements, uxðx; zÞ, uzðx; zÞ, and electric potential, /ðx; zÞ, by the following equations, respectively:
sij ¼
1

2
ðui;j þ uj;iÞ; Ei ¼ �/;i ð2Þ
in which i; j stand for x and z.
In the absence of body forces and free charges, it follows from the equilibrium equations of stresses and

electric displacements that elastic displacements and potential satisfy the basic governing equations
c11ux;xx þ c44ux;zz þ ðc13 þ c44Þuz;xz þ ðe31 þ e15Þ/;xz ¼ 0; ð3aÞ

c44uz;xx þ c33uz;zz þ ðc13 þ c44Þux;xz þ e15/;xx þ e33/;zz ¼ 0; ð3bÞ

e15uz;xx þ e33uz;zz þ ðe31 þ e15Þux;xz � e11/;xx � e33/;zz ¼ 0: ð3cÞ
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2.2. Boundary conditions

In what follows special attention is focused on a through Griffith crack of length 2a perpendicular to the

poling axis, as shown in Fig. 1. In order to obtain a desired electroelastic field of a piezoelectric medium
with a Griffith crack, appropriate boundary conditions must be furnished. First of all, for the elastic

boundary conditions, the crack surfaces are free of stress, which can be written as
rzzðx; 0Þ ¼ 0; rxzðx; 0Þ ¼ 0; jxj < a: ð4Þ
In addition, for electric boundary conditions at the crack surfaces, we adopt exact natural boundary

conditions
DðpÞ
n jC ¼ DðcÞ

n jC; EðpÞ
t jC ¼ EðcÞ

t jC; ð5Þ
where n and t represent respectively the directions of the outward normal and tangential vectors of C, C
being the boundary of crack posterior to deformation, not prior to deformation, a quantity with the

superscripts (p) or (c) designates the one in the piezoelectric matrix or in the hole inside the opening crack,

respectively, and the superscript (p) is commonly omitted without confusion.

In previous study involving crack problems of piezoelectric materials, electric boundary conditions of

two types at the crack surfaces prevail. One is an impermeable crack, assuming that the electric displace-

ment at the crack surfaces and inside the crack vanishes, and the other is a permeable crack, assuming that
electric displacement and electric potential are continuous across the crack. However, a real crack is a

dielectric with permittivity eðcÞ (¼ ere0, e0 ¼ 8:85� 10�12 F/m), er ¼ 1 corresponding to an ideal vacuum

crack. An impermeable crack simply enforces the requirement of er ¼ 0, while a permeable crack ignores

the contribution of the dielectric interior to crack on electroelastic field, both of which may give rise to an

error. Here it is emphasized that the relations in (5) are assumed to be valid at the boundary of a deformed

crack, which is contrast to the analysis by Shindo et al. (1997) for anti-plane shear crack and Yang (2001)

for an in-plane mode-I crack, who applied (5) at the boundary of an undeformed crack, i.e. C in this case

reduces to a mathematical cut having no thickness, �a < x < a, y ¼ 0. In effect, for the latter case, the
problem can be easily shown to be identical to that under the electrically permeable assumption at the crack

surfaces. According to the finite element analysis of McMeeking (1999), it is more reasonable and suitable

to take C as the boundary of the opening crack in treating crack problems of piezoelectric materials.

Moreover, recent experimental evidence (Schneider et al., 2003) revealed a distinct drop of electric potential

between two surfaces of an opening crack, which implies the existence of electric field in the opening crack

interior. Accordingly, the electric displacement vector DðcÞ inside the opening crack obeys
z

xa-a

r

Fig. 1. Geometry of a piezoelectric material with a Griffith crack along with the corresponding coordinates.
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DðcÞ
x ¼ eðcÞEðcÞ

x ; DðcÞ
z ¼ eðcÞEðcÞ

z ; ð6Þ

where eðcÞ ¼ ere0 is the dielectric permittivity of the crack interior, er ¼ 1 for a vacuum crack. The fact that

the crack opening displacement is small as compared to the crack length allows us to further assume that

EðcÞ
z ¼ EðcÞ

n jC, which may be supposed to be a constant, given by
EðcÞ
z ¼ � D/

Duz
; ð7Þ
where Duz and D/ are the jumps of elastic displacement and potential across the crack. Furthermore,
making use of (6) the electric displacement inside the opening crack is governed by the following relations:
DðcÞ
z ¼ �eðcÞ

D/
Duz

; ð8Þ
which has also been used in dealing with certain crack problems such as Hao and Shen (1994), McMeeking

(2001), Liu et al. (2001), Xu and Rajapakse (2001), Wang and Jiang (2002), and Wang and Mai (2003). It is

interesting to note that impermeable and conducting cracks can be treated as the limiting cases of dielectric

cracks as eðcÞ ! 0 and eðcÞ ! 1, respectively.
For a Griffith crack embedded in an infinite piezoelectric body subjected to a uniform mechanical

tension r1
0 and constant electric field E1

0 at infinity (see Fig. 1), remote mechanical and electric boundary

conditions can be written respectively below:
rzzðx; zÞ ! r1
0 ; Ezðx; zÞ ! E1

0 ; z ! 1; ð9aÞ

rxxðx; zÞ ! 0; Exðx; zÞ ! 0; x ! 1 ð9bÞ

rxzðx; zÞ ! 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
! 1: ð9cÞ
In general, it is easy to measure and control the electric field strength, rather than the electric dis-

placement, in experiment. As a result, for electric boundary conditions, E1
0 is supposed to be prescribed. Of

course, the case when electric displacement is given at infinity can be solved in a similar manner, which

is omitted here. Here, applied electric fields parallel or anti-parallel to the poling axis are referred as to

positive or negative electric fields, respectively.

3. Solution of the problem

In this section, we consider a Griffith crack of length 2a lying at a plane perpendicular to the poling

direction. Obviously, it is sufficient to consider the upper half piezoelectric body. The electroelastic field in

the lower part can be directly given by symmetry from the counterpart in the upper part. Hence in what

follows we confine our attention to the upper half-plane.

3.1. General solution in terms of the Fourier integral

To solve the stated-above problem, following the analysis of Rajapakse (1997), we represent ux, uz and /
in terms of three generalized harmonic functions Fjðx; zÞ which are governed by
F;zz þ c2F;xx ¼ 0; ð10Þ

where c2 are three roots of the following characteristic equation:
a0c6 þ b0c4 þ c0c2 þ d0 ¼ 0; ð11Þ

where the constants a0, b0, c0, and d0 are given in Appendix A.
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Consider a particular case of three distinct eigenvalues c2j (j ¼ 1; 2; 3), and other cases are similar, which

are omitted here for saving space. Further, if representing Fjðx; zÞ by Fourier cosine integrals
Fjðx; zÞ ¼ �
Z 1

0

1

n
AjðnÞe�cjnz cosðnxÞdn; ð12Þ
for zP 0, where AjðnÞ’s are unknown functions to be determined through appropriate electric and elastic

boundary conditions, and ReðcjÞ is chosen larger than zero to guarantee that the first and second deriv-

atives of Fjðx; zÞ with respect to x and z vanish at infinity, we can then get a general formal solution suitable

for dealing with the problem posed by (9), in terms of AjðnÞ as follows:
uxðx; zÞ ¼
X3

j¼1

Z 1

0

AjðnÞe�cjnz sinðnxÞdnþ B1x; ð13aÞ

uzðx; zÞ ¼
X3

j¼1

g3jcj

Z 1

0

AjðnÞe�cjnz cosðnxÞdnþ B3z; ð13bÞ

/ðx; zÞ ¼
X3

j¼1

g4jcj

Z 1

0

AjðnÞe�cjnz cosðnxÞdnþ B4z; ð13cÞ
where Bk (k ¼ 1; 3; 4) are unknown constants to be determined, and g3j and g4j are constants which are

determined by the following relations:
c11
c44 þ ðc13 þ c44Þg3j þ ðe31 þ e15Þg4j

¼
c13 þ c44 þ c44g3j þ e15g4j

c33g3j þ e33g4j
¼

e31 þ e15 þ e15g3j � e11g4j
e33g3j � e33g4j

¼ c2j : ð14Þ
Moreover, from the constitutive equations, expressions for the stresses and electric displacements in

terms of AjðnÞ are also obtainable. They are
rxxðx; zÞ ¼ �
X3

j¼1

b0j

Z 1

0

nAjðnÞe�cjnz cosðnxÞdnþ c11B1 þ c13B3 þ e31B4; ð15aÞ

rzzðx; zÞ ¼ �
X3

j¼1

b1j

Z 1

0

nAjðnÞe�cjnz cosðnxÞdnþ c13B1 þ c33B3 þ e33B4; ð15bÞ

rxzðx; zÞ ¼ �
X3

j¼1

b2j

Z 1

0

nAjðnÞe�cjnz sinðnxÞdn; ð15cÞ

Dxðx; zÞ ¼ �
X3

j¼1

b3j

Z 1

0

nAjðnÞe�cjnz sinðnxÞdn; ð15dÞ

Dzðx; zÞ ¼ �
X3

j¼1

b4j

Z 1

0

nAjðnÞe�cjnz cosðnxÞdnþ e31B1 þ e33B3 � e33B4; ð15eÞ
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where
b0j ¼ ðc13g3j þ e31g4jÞc2j � c11; ð16aÞ

b1j ¼ ðc33g3j þ e33g4jÞc2j � c13; ð16bÞ

b2j ¼ ½c44ð1þ g3jÞ þ e15g4j�cj; ð16cÞ

b3j ¼ ½e15ð1þ g3jÞ � e11g4j�cj; ð16dÞ

b4j ¼ ðe33g3j � e33g4jÞc2j � e31: ð16eÞ
As a straightforward check, substitution of (15) into the equilibrium equations reveals that them are

satisfied identically. The remaining task is how to get unknown Bj and AjðnÞ through appropriate electric

and elastic boundary conditions and further determine electroelastic field for the corresponding crack

problem.

3.2. Derivation of dual integral equations

Consideration of symmetry of the problem allows us to conclude that the shear stress at the crack plane

vanishes, i.e.
rxzðx; 0Þ ¼ 0; �1 < x < 1: ð17aÞ

Since attention is restricted to the upper half-plane, the following condition:
uzðx; 0Þ ¼ 0; /ðx; 0Þ ¼ 0; jxjP a ð17bÞ

must be supplemented because of symmetry of the problem. Besides, at the crack surfaces, electrome-

chanical boundary conditions
rzzðx; 0Þ ¼ 0; �a < x < a; ð17cÞ

Dzðx; 0Þ ¼ DðcÞ; �a < x < a; ð17dÞ

where DðcÞ is a parameter to be determined, governed by the relation (8).

Firstly, to look for three unknown constants Bk (k ¼ 1; 3; 4) involved in (15), application of the boundary
conditions at infinity in (9) results readily in a system of linear equations, which can be used to determine

uniquely Bk (k ¼ 1; 3; 4). The final result is given in Appendix A. Knowledge of Bk (k ¼ 1; 3; 4) permits us to

further seek the disturbed electroelastic field of a piezoelectric body weakened by a Griffith crack. To this

end, by substituting the above results into (13) and (15), utilizing the boundary conditions (17a) yields
X3

j¼1

b2jAjðnÞ ¼ 0: ð18Þ
Also, application of (15b) and (15e) to the conditions (17c) and (17d), respectively, leads to
�
X3

j¼1

b1j

Z 1

0

nAjðnÞ cosðnxÞdnþ r1
0 ¼ 0; �a < x < a; ð19aÞ

�
X3

j¼1

b4j

Z 1

0

nAjðnÞ cosðnxÞdnþ D1
z ¼ DðcÞ; �a < x < a; ð19bÞ
with
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DðcÞ ¼ �eðcÞ
P3

j¼1 g4jcj
R1
0

AjðnÞ cosðnxÞdnP3

j¼1 g3jcj
R1
0

AjðnÞ cosðnxÞdn
; �a < x < a; ð20aÞ

D1
z ¼ c11e33 � c13e31

c11c33 � c213
r1
0 þ c33e231 þ c11e233 � 2c13e33e31

c11c33 � c213

�
þ e33

�
E1
0 : ð20bÞ
Additionally, from (13b) and (13c) in conjunction with the conditions in (17b) we have
X3

j¼1

g3jcj

Z 1

0

AjðnÞ cosðnxÞdn ¼ 0; jxjP a; ð21aÞ

X3

j¼1

g4jcj

Z 1

0

AjðnÞ cosðnxÞdn ¼ 0; jxjP a: ð21bÞ
Thus we obtain coupled system of dual integral equations for AjðnÞ (j ¼ 1; 2; 3) with a parameter DðcÞ

governed by (20a). In the following, we first determine the electric displacement DðcÞ at the crack surfaces,

and then solve dual integral equations.
3.3. Electric displacement at the crack surfaces

In the resulting dual integral equations, an undetermined electric displacement DðcÞ is involved. In this

subsection, we shall give an explicit analytic expression for calculating DðcÞ and a simple form of approx-

imating DðcÞ. Since DðcÞ is clearly independent of n, it immediately follows from (20a) that
Z 1

0

X3

j¼1

DðcÞg3j
�

þ eðcÞg4j
�
cjAjðnÞ cosðnxÞdn ¼ 0; �a < x < a; ð22Þ
which, together with (21), gives
X3

j¼1

DðcÞg3j
�

þ eðcÞg4j
�
cjAjðnÞ ¼ 0: ð23Þ
Now we arrive at two Eqs. (18) and (23) for AjðnÞ (j ¼ 1; 2; 3), which are solvable up to two unknowns.

In other words, two unknowns may be represented by the remaining one. To achieve this, we may choose a

new intermediate auxiliary function AðnÞ such that
AjðnÞ ¼ ajAðnÞ; ð24Þ
where aj’s are constants. Putting the above into (18) and (23) yields, respectively,
X3

j¼1

b2jaj ¼ 0; ð25aÞ

X3

j¼1

DðcÞg3j
�

þ eðcÞg4j
�
cjaj ¼ 0: ð25bÞ
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Furthermore, substituting (24) into (19a) and (19b), a comparison results in
r1
0

X3

j¼1

b4jaj þ DðcÞ�
� D1

z

�X3

j¼1

b1jaj ¼ 0: ð25cÞ
Accordingly, Eqs. (25a), (25b) and (25c) form a system of linear algebraic equations for aj, which can be

rewritten in a compact form
K
a1
a2
a3

2
4

3
5 ¼

0

0

0

2
4

3
5; ð26Þ
with
K ¼
b11 DðcÞ � D1

z

� �
þ b41r

1
0 b12 DðcÞ � D1

z

� �
þ b42r

1
0 b13 DðcÞ � D1

z

� �
þ b43r

1
0

b21 b22 b23

g31D
ðcÞ þ g41e

ðcÞ� �
c1 g32D

ðcÞ þ g42e
ðcÞ� �

c2 g33D
ðcÞ þ g43e

ðcÞ� �
c3

2
64

3
75: ð27Þ
In order to obtain a nontrivial solution of this equation, the determinant of the matrix K must take zero,

i.e.
detðKÞ ¼ 0: ð28Þ
Expanding this determinant yields a quadric equation for DðcÞ. In particular, for several special situations,

DðcÞ may be determined via some simple expressions.

(I) In the absence of applied mechanical loading at infinity, this situation gives
DðcÞ ¼ D1
z or DðcÞ ¼ � det b1; b2; g2½ �

det b1; b2; g1½ � e
ðcÞ: ð29Þ
Hereafter bk denotes the vector composed of ðbk1; bk2; bk3Þ
T
(k ¼ 0; 1; . . . ; 4), and gk�2 denotes the vector

composed of ðgk1c1; gk2c2; gk3c3Þ
T
(k ¼ 3; 4), T being the transposition. Obviously, the first solution pertains

to the case where a piezoelectric body without crack or two crack surfaces contact each other, and the

second solution is reliant on the material properties and not on applied loading suitable for an opening

crack. From this, one further finds electric field inside the opening crack to be a constant

� det b1; b2; g2½ �= det b1; b2; g1½ �, independent of applied electric field and the dielectric permittivity.

(II) In the case of an impermeable crack, eðcÞ is approximately assumed to be zero. Here, from the ob-

tained solution we find
DðcÞ ¼ 0 or DðcÞ ¼ D1
z � r1

0

det b4; b2; g1½ �
det b1; b2; g1½ � : ð30Þ
Clearly, from the physical interpretation, the former DðcÞ ¼ 0 is suitable only for an opening crack and the

other solution for a closed crack.

(III) For a conducting crack, eðcÞ is commonly set to be infinity. In this situation, we obtain
DðcÞ ¼ D1
z � r1

0

det b4; b2; g2½ �
det b1; b2; g2½ � ; ð31Þ
which indicates that DðcÞ is a linear function of applied electric loading as well as applied mechanical
loading.
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In general, Eq. (28) admits two roots for a dielectric crack, expressed as
Fig. 2.

ceram
DðcÞ ¼ �m1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � 4m0m2

p
2m2

; ð32Þ
where m0, m1, and m2 are given in Appendix A. And only one is reasonable and the other is superfluous,

which should be neglected. Since er is finite and lies in a range of 0 to 1, corresponding to an impermeable

and conducting cracks, respectively, the corresponding electric displacement DðcÞ inside the opening crack

should be located at the range between two limiting values corresponding to er ¼ 0 and 1, respectively.

Thus, an acceptable DðcÞ may be selected. An alternative approach for determining an acceptable DðcÞ is to

look for the one such that Duzðx; 0ÞP 0, the physical interpretation of which is obviously to avoid pene-
tration of two crack surfaces. By computing for many practical examples, we find that, DðcÞ selected from

the above-mentioned two methods are identical. This result indicates that apart from the material prop-

erties of the piezoelectric matrix, the electric displacement DðcÞ of the crack interior is also dependent on the

dielectric permittivity of the crack interior. Moreover, not only applied electric loading but also on applied

mechanical loading at infinity have pronounced influence on DðcÞ. The dependence of DðcÞ on E1
0 for various

dielectric permittivity of the crack interior in a PZT-4 ceramic with a crack is shown in Fig. 2, from which it

is seen for a dielectric crack, the electric displacement at the crack surfaces is close to that for a conducting

crack, and far away from that for an impermeable crack. Especially, it is interesting to note that DðcÞ does
not vanish as E1

0 is less than about )8.2 kV/cm in Fig. 2, inferring that at this stage the crack does not open

and DðcÞ is therefore determined by the second in (30). Further, due to the complexity of dependence (32) of

DðcÞ on eðcÞ (or er) and applied loading, we present an approximate linear relation between DðcÞ and applied

electric fields for computing DðcÞ by the following form:
DðcÞ
ap ¼ kEE1

0 ; ð33Þ
with
kE ¼ eðcÞg2 det b1; b2; g2½ �
eðcÞ det b1; b2; g2½ � þ r1

0 det b4; b2; g1½ � � g1r1
0 det b1; b2; g1½ � ; ð34aÞ
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Table 1

The relevant material properties

Elastic stiffnesses

(·1010 N/m2)

Piezoelectric constants (C/m2) Dielectric permittivities

(·10�10 F/m)

c11 c33 c44 c12 c13 e31 e33 e15 e11 e33

PZT-4 13.9 11.3 2.56 7.78 7.43 )6.98 13.84 13.44 60 54.7
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where
Fig. 3.

20 MP
g1 ¼
c11e33 � c13e31
c11c33 � c213

; g2 ¼
c33e231 þ c11e233 � 2c13e33e31

c11c33 � c213
; ð34bÞ
which is very accurate for E1
0 taking in a range from )10 to 10 kV/cm. For example, for a PZT-4 ceramic

with relevant material properties listed in Table 1, the exact and approximate electric displacements, DðcÞ

and DðcÞ
ap , at the vacuum crack surfaces are very close for r1

0 ¼ 5 and 20 MPa, which is displayed in Fig. 3.

3.4. Full electroelastic field in the entire piezoelectric plane

Once DðcÞ is determined, nontrivial solution aj can be expressed in terms of DðcÞ via solving equations

arbitrary two equations among (25a), (25b) and (25c). For example, solving (25a) and (25c) we obtain
a2=a1
a3=a1

� �
¼ �

b22 b23

r1
0 b42 þ DðcÞ � D1

z

� �
b12 r1

0 b43 þ DðcÞ � D1
z

� �
b13

� ��1

�
b21

r1
0 b41 þ DðcÞ � D1

z

� �
b11

� �
: ð35Þ
Next, applying the boundary conditions (19a) and (21a) we get a pair of simultaneous dual integral

equations for AðnÞ
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Z 1

0

nAðnÞ cosðnxÞdn ¼ r1
0

jm
; jxj < a; ð36aÞ
Z 1

0

AðnÞ cosðnxÞdn ¼ 0; jxjP a; ð36bÞ
where
jm ¼
X3

j¼1

b1jaj: ð37Þ
Hence, employing standard theory of dual integral equations, a solution of the above equations is readily
found to be
AðnÞ ¼ aJ1ðnaÞ
n

r1
0

jm
; ð38Þ
where J1ð�Þ is the first-order Bessel function of the first kind.
It is pointed out that the above result is only suitable for the case where applied mechanical loading at

infinity is nonzero, i.e. r1
0 6¼ 0. Evidently, in the absence of mechanical loading, in view of the coupling

characteristic, applied electric loading also causes deformation of a piezoelectric body and further may give

rise to crack opening. However, in the case of r1
0 ¼ 0 the above result gives AðnÞ ¼ 0, which fails to cause

crack to open. In order to modify the above result, in this case we require jm ¼
P3

j¼1 b1jaj ¼ 0. Hence, Eq.

(19a) is an identity. Taking into account that the opening of crack is attributed to application of electric

loading for this case, we therefore use Eq. (19b) instead of Eq. (19a) to obtain dual integral equations

similar to (36). An analogous treatment gives a solution as
AðnÞ ¼ aJ1ðnaÞ
n

D1
z � DðcÞ� �
je

; ð39Þ
where
je ¼
X3

j¼1

b4jaj: ð40Þ
In view of (25c), it is readily seen that in the presence of mechanical loading, the solution (38) coincides with

(39). Likely, (39) is valid only for D1
z 6¼ DðcÞ. For convenience, we rewrite these two results in a uniform

form, i.e.
AðnÞ ¼ aJ1ðnaÞ
n

P
j
; ð41Þ
where
P ¼ r1
0 ; j ¼ jm; as r1

0 6¼ 0; ð42Þ
P ¼ D1
z � DðcÞ; j ¼ je; as r1

0 ¼ 0: ð43Þ
With the above obtained results, a full electroelastic field in the entire piezoelectric plane with a dielectric

crack can be determined. This can be achieved by substituting (41) into (13) for elastic displacements and
potential. Making use of some equalities involving infinite integrals of Bessel functions (Fabrikant, 2003),

explicit expressions for the elastic displacements and potential are obtained as follows:
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uxðx; zÞ ¼
P
j

X3

j¼1

aj x
h

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l21jðx; zÞ

q i
þ B1x; ð44aÞ

uzðx; zÞ ¼
P
j

X3

j¼1

g3jcjaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22jðx; zÞ � x2

qh
� cjz

i
þ B3z; ð44bÞ

/ðx; zÞ ¼ P
j

X3

j¼1

g4jcjaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22jðx; zÞ � x2

qh
� cjz

i
þ B4z; ð44cÞ
where some known integral identities have been utilized, which, together with Bk (k ¼ 1; 3; 4) appearing in

the above expressions, are given in Appendix A, and
l1jðx; zÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ xÞ2 þ ðcjzÞ

2
q�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� xÞ2 þ ðcjzÞ

2
q �

; ð45aÞ

l2jðx; zÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ xÞ2 þ ðcjzÞ

2
q�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� xÞ2 þ ðcjzÞ

2
q �

: ð45bÞ
In a similar fashion, from (15), we can further give a complete solution of elastic stresses, strains, electric

displacements, and electric fields in the entire plane. Or rather, the distribution of electroelastic field in the

entire plane is
rxxðx; zÞ ¼
P
j

X3

j¼1

b0jaj h2jðx; zÞ
�

� 1
�
; rzzðx; zÞ ¼

P
j

X3

j¼1

b1jajh2jðx; zÞ; ð46aÞ

rxzðx; zÞ ¼ � P
j

X3

j¼1

b2jajh1jðx; zÞ; ð46bÞ

sxxðx; zÞ ¼ � P
j

X3

j¼1

aj h2jðx; zÞ
�

� 1
�
; szzðx; zÞ ¼

P
j

X3

j¼1

g3jc
2
j aj h2jðx; zÞ

�
� 1

�
; ð46cÞ

sxzðx; zÞ ¼ � P
2j

X3

j¼1

g3j
�

þ 1
�
cjajh1jðx; zÞ; ð46dÞ

Dxðx; zÞ ¼ � P
j

X3

j¼1

b3jajh1jðx; zÞ; Dzðx; zÞ ¼
P
j

X3

j¼1

b4jaj h2jðx; zÞ
�

� 1
�
þ D1

z ; ð46eÞ

Exðx; zÞ ¼
P
j

X3

j¼1

g4jcjajh1jðx; zÞ; Ezðx; zÞ ¼ � P
j

X3

j¼1

g4jc
2
j aj h2jðx; zÞ

�
� 1

�
; ð46fÞ
where
h1jðx; zÞ ¼
l1jðx; zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � l21jðx; zÞ

q
l22jðx; zÞ � l21jðx; zÞ

; h2jðx; zÞ ¼
l2jðx; zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22jðx; zÞ � a2

q
l22jðx; zÞ � l21jðx; zÞ

: ð47Þ
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From the above, explicit analytic expressions for the entire electroelastic field are given through ele-

mentary functions. Generally speaking, cj’s are probably related to complex numbers, but by a direct check

one can find that all the quantities in the above-obtained electroelastic field are completely real. From a

viewpoint, the derived solution is reasonable and correct. In reality, alternative expressions in terms of the

real and imaginary parts of relevant complex functions involving
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ icjzÞ

2 � a2
q

can also be given, which
are omitted here. As indicated by Fabrikant (2003), it is very difficult to separate the corresponding real and

imaginary parts into explicit expressions. However, the solution provided here is in simple, analytic, and

explicit form.

On the other hand, if we confine our attention to the crack plane, we deduce immediately elastic dis-

placements and potential, from the results (44), as
uxðx; 0Þ ¼
P
j

X3

j¼1

aj x
h

� Hðjxj � aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p i
; ð48aÞ

uzðx; 0Þ ¼
PHða� jxjÞ

j

X3

j¼1

g3jcjaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
; ð48bÞ

/ðx; 0Þ ¼ PHða� jxjÞ
j

X3

j¼1

g4jcjaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
; ð48cÞ
and elastic stresses, electric displacement, and electric field, from the results (46), as
rzzðx; 0Þ ¼
r1
0 jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p Hðjxj � aÞ; ð49aÞ

rxzðx; 0Þ ¼ 0; ð49bÞ

Dzðx; 0Þ ¼
D1

0 � DðcÞ� �
jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p Hðjxj � aÞ þ DðcÞ; ð49cÞ

Ezðx; 0Þ ¼
P
j

X3

j¼1

g4jc
2
j aj 1

�(
� xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p

�
þ E1

0

)
Hðjxj � aÞ þ DðcÞ

eðcÞ
Hða� jxjÞ; ð49dÞ
where HðtÞ denotes the Heaviside unit step function, i.e. HðtÞ ¼ 1 for t > 0 and HðtÞ ¼ 0 for t < 0.

Obviously, rzzðx; 0Þ at the crack plane is independent of applied electric loading and material properties.

Nevertheless, the distribution of rzzðx; zÞ (z 6¼ 0) around the crack tip is reliant on the material properties,

which is apparently seen from (46a) owing to the dependence relation of jm and aj on electric loading and

the material properties. In contrast, in addition to applied electric loading and material properties, not only

Dzðx; zÞ (z 6¼ 0) around the crack tip but also Dzðx; 0Þ at the crack plane depends upon applied mechanical

loading, since the electric displacement DðcÞ at the crack surfaces is determined by electric loading as well as
mechanical loading.
4. Fracture criterion

In studying the stability of a cracked piezoelectric structure, some facture criteria such as those of the
maximum hoop stress and energy release rate in classical linear elastic fracture mechanics cannot be directly

generalized to piezoelectric materials, since there exists a significant discrepancy between experimental
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observations and theoretical predictions based on these criteria. In this section, MHS is suggested as a

fracture criterion for piezoelectric materials, and the theoretical predictions based on this criterion agree

closely with experimental data.

Fracture parameters are intimately relating to asymptotic field around the crack tip. Thus, prior to the
presentation of this fracture criterion, it is expedient to determine asymptotic expressions for electroelastic

field around the crack tip. For this purpose, we introduce a polar coordinate system ðr; hÞ with the origins at

the right crack tip, as shown in Fig. 1, which satisfies
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2 þ z2

q
; h ¼ tan�1½z=ðx� aÞ�: ð50Þ
In the close vicinity of the crack tip, i.e. r � a, we have
l1j ’ aþ r
2

cosðhÞ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðhÞ þ c2j sin

2ðhÞ
q �

; ð51aÞ
l2j ’ aþ r
2

cosðhÞ
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðhÞ þ c2j sin

2ðhÞ
q �

: ð51bÞ
Upon substitution of these into (46), by neglecting some higher-order infinitesimal terms, the asymptotic

expressions for electroelastic field in the vicinity of the crack tip are derived below:
rxxðr; hÞ
rzzðr; hÞ
rxzðr; hÞ

2
4

3
5 ’ P

j

ffiffiffiffiffi
a
2r

r X3

j¼1

b0jajf2jðhÞ
b1jajf2jðhÞ
�b2jajf1jðhÞ

2
4

3
5þOð1Þ; ð52aÞ
sxxðr; hÞ
szzðr; hÞ
sxzðr; hÞ

2
4

3
5 ’ P

j

ffiffiffiffiffi
a
2r

r X3

j¼1

�ajf2jðhÞ
g3jc

2
j ajf2jðhÞ

�ð1þ g3jÞcjajf1jðhÞ=2

2
4

3
5þOð1Þ; ð52bÞ
Dxðr; hÞ
Dzðr; hÞ
Exðr; hÞ
Ezðr; hÞ

2
664

3
775 ’ P

j

ffiffiffiffiffi
a
2r

r X3

j¼1

�b3jajf1jðhÞ
b4jajf2jðhÞ
g4jcjajf1jðhÞ
�g4jc

2
j ajf2jðhÞ

2
664

3
775þOð1Þ; ð52cÞ
where f1jðhÞ and f2jðhÞ denote the functions of angle distribution, defined by
f1jðhÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2ðhÞ þ c2j sin
2ðhÞ4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1� cosðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2ðhÞ þ c2j sin
2ðhÞ

q
2
64

3
75

vuuuut ; ð53aÞ
f2jðhÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2ðhÞ þ c2j sin
2ðhÞ4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ cosðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2ðhÞ þ c2j sin
2ðhÞ

q
2
64

3
75

vuuuut ; ð53bÞ
which are universal and pertain to all crack configurations and loading conditions, but depend on the roots

of the characteristic equation (11).
From the above, the intensity factors of stress, strain, electric-displacement and electric-field near the

crack tip, according to their definitions
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Kq ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
qðx; 0Þ; ð54Þ
where q stands for rzz, szz, Dz, and Ez, respectively, can be evaluated as
Kr ¼ r1
0

ffiffiffiffiffiffi
pa

p
; Ks ¼ P

j

X3

j¼1

g3jc
2
j aj

ffiffiffiffiffiffi
pa

p
; ð55aÞ

KD ¼ D1
z

�
� DðcÞ� ffiffiffiffiffiffi

pa
p

; KE ¼ � P
j

X3

j¼1

g4jc
2
j aj

ffiffiffiffiffiffi
pa

p
: ð55bÞ
As a by-production, another important fracture parameter, the elastic T -stress, defined as the nonsingular
term of asymptotic field rxx near the crack tip and is used to characterize constraint around the crack tip, is

found from (46a) to be
T ¼ � P
j

X3

j¼1

b0jaj: ð56Þ
Clearly the elastic T -stress is dependent on applied electric loading and the material properties, while Kr is

independent of applied electric loading and the material properties. No matter how applied electric loading

varies, stress intensity factor maintains unchanged, implying that stress intensity factors near the crack tip is

inapplicable to predicting crack growth of piezoelectric materials.
On the other hand, for a piezoelectric material, the total energy release rate, defined as the released

energy per unit length during crack growth under combined electromechanical loading, consists of two

parts: G ¼ Gm þ Ge, Gm and Ge are so-called mechanical strain energy release rate and electric energy re-

lease rate, which can respectively be evaluated by the following integrals (0 < d � a):
Gm ¼ lim
d!0

1

2d

Z d

0

rzzðr; 0Þ uzðd½ � r; pÞ � uzðd� r;� pÞ�dr; ð57Þ

Ge ¼ lim
d!0

1

2d

Z d

0

Dzðr; 0Þ /ðd½ � r; pÞ � /ðd� r;� pÞ�dr; ð58Þ
where uz is also influenced by applied electric field because of the coupling characteristic, and aside from

electric loading, / is also related to mechanical loading. Substituting asymptotic expressions for the stress

and displacement into the above integrals yields
Gm ¼ par1
zz

2

P
j

X3

j¼1

g3jcjaj; Ge ¼
pa D1

z � DðcÞ� �
2

P
j

X3

j¼1

g4jcjaj; ð59Þ
where P and j are defined as before. The total energy release rate G is therefore given by
G ¼ paP
2j

r1
zz

X3

j¼1

g3jcjaj

"
þ D1

z

�
� DðcÞ�X3

j¼1

g4jcjaj

#
ð60Þ
or
G ¼ pa
2

P
j

X3

j¼1

r1
zz

�
� 1

eðcÞ
DðcÞ D1

z

�
� DðcÞ��g3jcjaj ð61Þ
in view of (25b). Especially, for an impermeable crack, eðcÞ ¼ 0, and DðcÞ ¼ 0; so the above result reduces to
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G ¼ pa
2

X3

j¼1

ðr1
zz Þ

2

jm
g3jcjaj

"
þ ðD1

z Þ
2

je
g4jcjaj

#
: ð62Þ
Computational results indicate that, similar to that for an impermeable crack, Ge for a dielectric crack is
also always negative regardless of positive or negative electric fields, inferring that any electric field impedes

crack growth for piezoelectric materials, contrary to experimental results. If adopting the viewpoint that Ge

is responsible for the breakdown of electric behavior in dielectrics (Garboczi, 1988; Ouyang and Lee, 1998)

and Gm for the failure of mechanical behavior (Park and Sun, 1995; Guiu et al., 2003), we neglect Ge and

have G ¼ Gm. Furthermore, Gm ¼ 0 in the absence of mechanical loading, which is inconsistency with

experimental findings that purely electric fields can also drive crack propagation in a poled ferroelectric

ceramic (Cao and Evans, 1994; Schneider and Heyer, 1999; Shang and Tan, 2001; dos Santos e Lucato

et al., 2002).
In the present paper, the MHS criterion (Ayari and Ye, 1995; Chang, 1981) is suggested as a fracture

criterion. A basic reason is that a crack can advance ahead only because of the result of crack deformation,

which can be generated by not only mechanical loading but also electric loading. Since the MHS in the close

vicinity of the crack tip (r � a) can be characterized by the strain intensity factor Ks, the MHS criterion, in

effect, is equivalent to the strain intensity factor criterion. It follows from the second in (55a) that Ks is

apparently dependent on mechanical loading as well as electric loading, implying that crack growth can be

driven by both mechanical loading and electric loading, even by purely electric fields. Similar to the

hypotheses for the maximum hoop stress criterion, for the MHS criterion the following hypotheses are
adopted (Ayari and Ye, 1995; Chang, 1981).

Hypothesis 1. Crack initiation starts when the maximum of the hoop strain shh reaches a critical value,

which is a material constant.

Hypothesis 2. Crack initiation is assumed to occur in the direction along which shh arrives at a maximum.
5. Numerical results and discussions

To demonstrate the effectiveness of the MHS criterion as a fracture criterion of piezoelectric materials, in

this section, as a numerical example we consider a commercially available PZT-4 ceramic and study the

influence of applied electric field on crack growth through the MHS criterion. When a PZT-4 is poled along

the z-axis, it exhibits transversely isotropic behavior and the relevant material properties are given in Table

1 (Park and Sun, 1995). Here of interest is the case where a plane crack perpendicular to the poling axis

penetrates through the PZT-4 ceramic along the y-axis.
In order to determine the direction of crack initiation, the angle distribution of the hoop strain, nor-

malized by multiplying shhðr; hÞ by
ffiffiffiffiffiffiffiffiffiffi
2r=a

p
, around the crack tip is plotted for a vacuum dielectric-crack with

different applied electric fields in the presence and absence of mechanical loading in Figs. 4 and 5,

respectively. It is readily found from Fig. 4 that the MHS shh occurs at h ¼ 0�, indicating that crack

propagates along the crack plane and cannot branch or deflect for any combined electromechanical

loading, which agrees with the experimental observations by Park and Sun (1995) and with the theoretical

predictions through the finite element method according to the energy release rate criterion (Kumar and

Singh, 1998). Also, the MHS becomes larger for a positive electric field, or less for a negative electric field

than that in purely mechanical loading, inferring that positive electric fields promote crack growth and

negative ones hinder crack growth, coinciding qualitatively with experiment findings of Park and Sun
(1995). Moreover, irrespective of the sign of applied electric fields, the strain in front of the crack tip shh is
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tensile in a range of jhj < 62�, 63�, and 64� for E1
0 ¼ �5, 0, and 5 kV/cm, respectively, and is compressive in

other regions, causing the crack to open and even to propagate along the crack plane. In contrast, from

(49a) the maximum hoop stress rhh at h ¼ 0 is not reliant on applied electric fields, although the maximum

hoop stress rhh also takes place at h ¼ 0 and rhh when h 6¼ 0 depends slightly on electric fields, which

indicates that crack initiation is controlled by the MHS rather than the maximum hoop stress. It is worth
noting that in the previous study (Pak, 1992; Sosa, 1992; Kumar and Singh, 1996), enough high negative

electric fields may cause a crack to deviate from the original crack plane in crack growth for an imper-

meable crack. However, the present study indicates that this case seems not to take place, since negative

electric fields cause crack opening to decrease and even to close, and in this case the electric displacement at

the crack surfaces are a nonvanishing constant rather than zero due to the perfect contact of two crack
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surfaces. In fact, according to the energy release rate criterion, a crack indeed propagates in a straight line

along the crack plane for any combined electromechanical loading (Kumar and Singh, 1998), identical to

that according to the MHS criterion. Furthermore, in the absence of mechanical loading (Fig. 5), purely

electric fields, if it rises high enough, may drive crack propagation.
Dependence of the MHS on applied electric fields is given in the presence and absence of mechanical

loading, r1
0 ¼ 8 MPa, and 0, for different dielectric permittivities of the crack interior in Figs. 6(a) and 7(a),

respectively. For comparison, in Figs. 6(b) and 7(b), the normalized crack center opening displacement,

uzð0; 0Þ=a, is presented for the corresponding cases, since uzð0; 0Þ=a is also a significant fracture parameter

accounting for crack opening. From these figures we find that both the MHS and the normalized crack

center opening displacement remain unchanged for a conducting crack, which depend only upon applied

mechanical loading and not only electric fields. This is an obvious conclusion for a conducting crack. As

expected, purely electric fields fail to generate any MHS and crack opening displacement for a conducting
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crack. However, for an impermeable crack with the relative dielectric constant er ¼ 0 of the crack interior,

the MHS ahead of the crack tip has a plateau and exhibits constant compressive behavior in a range of
lower applied electric fields. From Fig. 6(b) we find that at this stage, there is no crack opening dis-

placement. In other words, under such combined electromechanical loading, crack does not open and

maintains closed for an enough high negative electric field, which can be explained by the fact that a

negative electric field cause a piezoelectric material to shrink in the poling axis. And when applied electric

fields exceed a certain (negative) value, the MHS as well as the crack center opening displacement rises in a

straight line as electric field is raised. For a real vacuum crack with er ¼ 1, a plateau similar to those for an

impermeable crack has not been found when electric field lies in the interval ½�10; 20�. Moreover, the MHS

is always tensile and the crack is always open in the presence of mechanical loading r1
0 ¼ 8 MPa, although

applied negative electric fields decrease the MHS as well as the crack center opening displacement. It is also

observed from Fig. 6(a) that the MHS is increased with increasing applied electric field for a vacuum
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dielectric-crack, which again implies the consistency with experimental results. And the same trend is visible

for the crack center opening displacement in Fig. 6(b).

In the absence of mechanical loading, from Fig. 7 it is seen that any purely electric fields fail to drive a

conducting crack to open, which is as expected. For an impermeable crack with er ¼ 0, a crack immediately
opens provided that positive electric fields are applied, and maintains closed provided that negative electric

fields are applied. However, for a vacuum crack with er ¼ 1, the turning point of applied electric field from

a closed crack to a open crack is shifted from zero to a higher positive electric field, which is clearly due to

the influence of the dielectric permittivity of the crack interior on crack growth. From the above, for a

nonconducting crack, an important conclusion can be drawn out. That is, purely electric fields can also

drive fatigue crack growth, which may explain crack growth driven by purely electric fields observed in a

poled ferroelectric ceramic in experiment (Cao and Evans, 1994; Schneider and Heyer, 1999; Shang and

Tan, 2001). It is noted that this phenomenon cannot be predicted according to the fracture criterion of the
mechanical strain energy release rate (Park and Sun, 1995), since it vanishes in the absence of mechanical

loading.

Finally, based on the MHS criterion proposed in the present paper, a comparison between the theo-

retical predictions and the experimental results of Park and Sun (1995) is made. The experimental setup of a

compact tension specimen adopted by Park and Sun is depicted in Fig. 8. Applied electric field E was
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generated by controlling a voltage between two opposite top and bottom surface thin electrodes. Under a

certain electric field, mechanical tensive loading was applied, and the procedure of testing was to increase

the tensive load until fracture occurred.

From the experimental data of Park and Sun (1995), the fracture initiation loads F under different
electric fields are shown in Fig. 9. Especially, in the absence of applied electric field, the fracture load F is

estimated about 93 N, from which we derive a critical value of the MHS. In what follows we start with this

critical value. According to the MHS criterion, the relation between the fracture loads F and applied

electric fields E1
0 should be lie at a certain contour line of shh equal to the critical value, which is displayed in

Fig. 9. From Fig. 9, it is readily seen that the theoretical predictions in the presence of applied electric field

give the fracture loads F ¼ 136, 111, 78, 66 N corresponding to E1
0 ¼ �5, )2.5, 2.5, 5 kV/cm, respectively,

in satisfactory agreement with the experimental measures given by Park and Sun (1995). This indicates that

the MHS criterion is a potential fracture criterion for piezoelectric materials. Of course, it is worth noting
that like other fracture criteria, the MHS criterion is also a macroscopic one which does not reflect the

mesomechanical and micromechanical behaviors of piezoelectric materials.
6. Conclusions

In addition to mechanical stress, purely electric loading also produce deformation due to the coupling

feature between elastic and electric behaviors of piezoelectric materials. Crack opening is only due to the
direct results of crack deformation, and crack growth is therefore attributed not only to mechanical stress

but also to electric loading. Based on this assumption, the MHS is suggested as a fracture criterion of

piezoelectric materials. Using this criterion, relevant experimental results can be successfully explained, that

is, applied electric fields can enhance and hinder crack propagation, depending on positive and negative

electric fields. Furthermore, purely electric field may also drive crack growth, regardless of the presence of

applied mechanical loading. Some main conclusions are summarized as follows.

• The MHS is suggested as an effective facture criterion. The theoretical predictions are in excellent agree-
ment with experimental data.

• The electric displacement at the crack surfaces depends nonlinearly upon applied electromechanical

loading for a dielectric crack. A linear approximation of the electric displacement at the crack surface

on applied electric field is present and exhibits a satisfactory accuracy.

• The complete electroelastic field for a dielectric crack is obtained in terms of elementary functions, and

the asymptotic crack-tip field is also determined in terms of two unified angle distribution functions.

Impermeable and conducting cracks are special cases of dielectric crack as the dielectric permittivity

of the crack interior vanishes and approaches infinity, respectively.
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Appendix A

The constants appearing in the characteristic equation (11) are
a0 ¼ c44 c33e33
�

þ e233
�
; ðA:1Þ
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b0 ¼ �2c44e15e33 � c11e233 � c33ðc44e11 þ c11e33Þ þ e33ðc13 þ c44Þ2 þ 2e33ðc13 þ c44Þðe31 þ e15Þ

� c244e33 � c33ðe31 þ e15Þ2; ðA:2Þ

c0 ¼ 2c11e15e33 þ c44e215 þ c11ðc33e11 þ c44e33Þ � e11ðc13 þ c44Þ2 � 2e15ðc13 þ c44Þðe31 þ e15Þ

þ c244e11 þ c44ðe31 þ e15Þ2; ðA:3Þ

d0 ¼ �c11 c44e11
�

þ e215
�
: ðA:4Þ
By solving the resulting equations, the unknown constants Bk, (k ¼ 1; 3; 4) are obtained as
B1 ¼
�c13r1

0 þ ðc33e31 � c13e33ÞE1
0

c11c33 � c213
; ðA:5Þ

B3 ¼
c11r1

0 þ ðc11e33 � c13e31ÞE1
0

c11c33 � c213
; ðA:6Þ

B4 ¼ �E1
0 ; ðA:7Þ
In Eq. (32), the coefficients m0, m1, and m2 are, respectively,
m0 ¼ eðcÞr1
0 det½b4; b2; g2� � eðcÞD1

z det½b1; b2; g2�; ðA:8Þ

m1 ¼ eðcÞ det½b1; b2; g2� þ r1
0 det½b4; b2; g1� � D1

z det½b1; b2; g1�; ðA:9Þ

m2 ¼ det½b1; b2; g1�: ðA:10Þ

In deriving (44) and (46), the following integral identities:
Z 1

0

1

n
e�cnJ1ðanÞ cosðbnÞdn ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � b2

q�
� c

�
; ðA:11Þ

Z 1

0

1

n
e�cnJ1ðanÞ sinðbnÞdn ¼ 1

a
b

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � l21

q �
; ðA:12Þ

Z 1

0

e�cnJ1ðanÞ cosðbnÞdn ¼ 1

a
� l2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � a2

p
l22 � l21

; ðA:13Þ

Z 1

0

e�cnJ1ðanÞ sinðbnÞdn ¼ l1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � l21

p
l22 � l21

; ðA:14Þ
have been utilized, which can be readily shown from Fabrikant (2003), where ReðcÞ > jImða� bÞj,
l1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ2 þ c2

q�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ c2

q �
; ðA:15Þ

l2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ2 þ c2

q�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ c2

q �
: ðA:16Þ
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